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Abstract

This paper estimates a dynamic model of interfuel substitution for

Swedish heating plants. We use the cost share linear logit model devel-

oped by Considine and Mount (1984). All estimated own-price elastic-

ities are negative and all cross-price elasticities are positive. The esti-

mated dynamic adjustment rate parameter is small, however increas-

ing with the size of the plant and time, indicating fast adjustments in

the fuel mix when changing relative fuel prices. The estimated model

is used to illustrate the e¤ects of two di¤erent policy changes.

¤The authors acknowledge research grants from the Swedish National Energy Admin-

istration.

1



1 Introduction

The ultimate purpose of this paper is to estimate how the choice of fuel

mix in the production of heat changes as the relative prices on various fuels

changes. To accomplish this we specify and estimate dynamic conditional de-

mand functions for various fuels using a panel-data set that describes the fuel

mix for individual Swedish heating plants over the period 1990-1996. The

methodology we use follow to a large extent the methodology suggested by

Considine and Mount (1984), and Considine (1989a and 1989b, and 1990).1

The methodology involves the estimation of a dynamic linear logit model

where the dynamics implicitly are assumed to evolve from costs of adjust-

ments for the various inputs. This paper di¤ers from earlier studies in that

we have a plant level panel data set, and that we allow the adjustment pa-

rameter depend on characteristics of the …rm and time. Thus we are able to

investigate how size and diversi…cation in di¤erent combustion technologies

a¤ect the rate of dynamic fuel substitution due to price changes. In addition

an attempt is made to cope with the problem that not all …rms are using all

inputs. To accomplish the latter we adopt a dummy variable approach sug-

gested by Battese (1998), which essentially implies that we allow for di¤erent

technologies depending on what inputs a …rm is using.

The background to the empirical problem goes back to the beginning

of 1997, when the Swedish government devised a program which objective

was to stimulate an increase of the use of biofuels. This program is one

part in a scheme which ultimate aim is to make the Swedish energy system

”sustainable” in the sense that it should be based on renewable resources.

The program includes subsidies to households and large-scale combustion

plants, and comes amidst an overhaul of the whole energy taxation system.

1For recent applications of this model see e.g. Jones (1995) and Jones (1996).
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Thus, given estimates of demand functions for fuels we are in a position to

shed light on the possible impact on the choice of fuel mix due to a change

in tax policy. The results can be used to shed light on the fuel mix per

se, but also to investigate environmental impacts due to policy shifts (see

Brännlund and Kriström, 1999), and to investigate how much and how fast

di¤erent types of plants adjusts to new relative prices.

Traditionally most studies of the choice of fuel mix in energy transforma-

tion concerns electricity generation. In fact, we have only found one study,

Brännlund and Kriström (1999), that explicitly investigates the economics of

fuel choice in heat generation. In Brännlund and Kriström demand elastici-

ties are estimated indirectly through the estimation of a production function,

which in a second step is utilized in a cost minimization problem. The re-

sulting elasticities have the expected signs and magnitudes, i..e. own-price

elasticities are negative, and cross-price elasticities are positive. Concerning

studies of fuel mix in electricity generation there are essentially two lines of

research. One line follows an approach that explicitly takes into account the

”discreteness” of fuel burning techniques, i.e., that a …rm can make use of

a few …xed coe¢cient fuel burning technologies. This line of research can

be represented by Joskow and Mischkin (1977), who basically estimates the

probability for choosing a speci…c burning technology, and hence fuel type.

The model is a conditional logit model following McFadden (1973). the sec-

ond line of research can be viewed as a ”continuous” approach in that fuel

demand is modelled as a continuous variable. A seminal paper in this area

is Atkinson and Halvorsen (1976). They specify a translog pro…t function,

and by applying Hotelling’s lemma they get estimable demand functions for

various fuels. The data they use are regional US data. A problem with their

study is that all plants are not using all types of fuels. They circumvent this
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problem by estimating demand functions ”pair-wise”. In this paper we try to

solve this problem by using the dummy variable approach described above.

Since then a large number of studies concerning fuel substitution has been

undertaken. Most of them adopt a cost function approach, and except for

Kolstad et. al. (1986), and Pindyck (1980), they employ data for electricity

generation in the US.2

The rest of the paper is structured as follows: In section 2 we outline

the theory underlying our empirical model. Data and the choice of empirical

model is discussed in section 3. The empirical results are commented upon

in section 4, while simulations of two policy changes are presented in section

5. Finally, section 6 o¤ers some concluding remarks and hints for future

research in this area.

2 Model

The basic assumption underlying our model is that each heat generating …rm

is minimizing its costs, subject to a transformation function. The transfor-

mation (or production function) is a function describing maximal output for

di¤erent combinations of input quantities. It is assumed that three di¤er-

ent types of inputs are necessary to generate heat; primary energy (fuels),

labor, and capital. Furthermore it is assumed that the production function

is weakly separable in the di¤erent types of inputs. The production function

for …rm i in period t can thus, in general form, be written as:

yit = f(hit(x);Lit;Kit); i = 1; :::; n; and t = 1; :::; T ; (1)

where x = [xit1; :::; xitK] is a vector of K fuel inputs, hit(x) is the aggregate

input of primary energy, Lit and Kit is labor and capital input respectively.
2Uri (1977), Lutton and LeBlanc (1984), Bopp and Costello (1990).
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The assumption of separability implies that the marginal rate of technical

substitution between fuel inputs is independent of labor and/or capital input.

In addition we will assume that hit is a homothetic function. Given these

assumptions it can be shown (see Chambers, 1988) that the corresponding

cost function is weakly separable in factor prices and output, i.e. (suppressing

time and …rm indexes)

c(p; y) = C(g(p);w; q; y); (2)

where p = [p1; :::pK] is a vector of factor prices corresponding to x, w and q

are price of labor and capital respectively, and y is output.

The assumption of weak separability and homotheticity allows us to an-

alyze a separate cost function corresponding to the input vector x:

ce = g(p): (3)

The cost function ce have the usual properties, i.e. it’s nondecreasing in p,

concave and continuous in p, and homogenous of degree 1 in p. Applying

Shepard’s lemma gives us the derived demand for the input vector x:

xk(p) =
@g(p)

@wk
; k = 1; :::;K: (4)

Due to the properties of the cost function the demand functions in equa-

tion (4) are homogenous of degree 0 in p, xk > 0, the matrix of elements

@xk=@wl are negative semide…nite, and @xk=@wl = @xl=@wk (symmetric) for

k 6= l. Speci…cation of a demand system for the input subvector x that satis-

…es these properties will thus be consistent with an underlying cost function

which is the dual to a weakly separable homothetic production function.

The usual approach in empirical applications is to specify an empirical cost

function and derive the system of demand equations by applying Shepard’s

lemma as above. An often used functional form for the cost function is the
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translog cost function (Christensen, Jorgensen and Lau, 1975). A potential

problem with the translog speci…cation is that it is ”well-behaved” for only

a limited range of relative prices (see Caves and Christensen, 1980). Out-

side this speci…c range regularity conditions such as positive cost shares and

negative own-price e¤ects are not satis…ed. This may be a particular prob-

lem if the model is intended for simulation purposes. A cost function that

globally satis…es the regularity conditions is the Cobb-Douglas function. The

trade-o¤ for this virtue in the Cobb-Douglas case is that the elasticities of

substitution between any pair of inputs equals one. Thus, traditionally the

choice of functional form has been viewed as a choice between regularity and

‡exibility.

From above it should be clear that there are two possible routes to take.

The …rst route is to specify a cost function, apply Shepard’s lemma, and es-

timate the resulting demand functions together with the cost function. The

second route is to specify demand functions that ful…ll, or at least has the po-

tential to ful…ll, the neoclassical foundations. As, for example, Jones (1996),

Jones (1995) and Considine and Mount (1984), we will follow the second

route by using the linear logit model. The linear logit model has several ad-

vantages. One is that it more ‡exible than the Cobb-Douglas function, at the

same time as it ful…ll the regularity conditions (given appropriate parameter

restrictions). Also, the linear logit model can be speci…ed so that it explicitly

captures dynamic e¤ects by including lagged quantities, rather than lagged

cost shares as in the case of a dynamic Translog speci…cation. This quantity

based adjustment process ensures the Le Chatelier principle, i.e. short run

elasticities are always smaller than the long run elasticities. Several studies,

see for example Jones (1995) and references therein, has performed a ”horse

race” between the translog speci…cation and the linear logit model. In most

6



cases the linear logit model outperforms the translog speci…cation, especially

when dynamic adjustment processes are introduced.

A static version of the linear logit model can be speci…ed in terms of cost

shares as follows (…rm index suppressed):

Skt =
eÀktPK
l=1 e

Àlt
; (5)

where

Àkt = ´k +
KX

l=1

°kl lnplt; (6)

and k; l = 1; :::;K is the index for inputs andK is the number of inputs. From

equation (5) it should be clear that the cost shares will always be positive.

By imposing the appropriate restrictions on the parameters in equation (6)

symmetry and homogeneity will follow.

The model speci…ed in equations (5) and (6) is static, which in this case

means that input demand, due to price changes, instantaneously adjusts to

long-run equilibrium. To introduce dynamics we will basically assume that

there is some kind of adjustment cost that may create di¤erences between

short and long-run demand. For example, changing fuel mix may be costly

due to technological constraints. Here we will follow Treadway (1974) by

simply assuming that y = f(x;
:
x), where x is a vector of inputs, and

:
x is the

rate of change in x. As usual we have that @f=@x ¸ 0, but in addition we

have that @f=@
:
x� 0, implying adjustment costs. According to Treadway

(1971), under certain assumptions about the adjustment process, the optimal

path of input x can be written as:

:
x= L [x ¡ x¤] ; (7)

where x¤ is the long-run stationary equilibrium, and L is a matrix which

elements measures the rate of adjustment to long run equilibrium. In general
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L is a function of the discount rate and x¤. Assuming that Lkl = 0 for k 6= l
and that Lkk = L for all k enables us to write a dynamic version of equation

(6) as:

Àkt = ´k +
KX

l=1

°kl ln plt + ¸ ln xkt¡1; (8)

where ¸ measures dynamic rate of adjustment (see Considine and Mount,

1984, for a complete derivation).

3 Data and Empirical model

In our application we use a panel data set containing fuel input in Swedish

heat generating combustion plants between 1990 and 1996 (t = 1; :::; 7) for

252 number of …rms (i = 1; :::252). All major combustion plants in Sweden

are included. The data set includes input values as well as input quantities

for each individual fuel. Each observation unit in our data set is a …rm that

may have several combustion units. That means that an individual …rm may

use up to 16 di¤erent fuel types within a year, which neccesitates aggregation.

Here we have aggregated fuels into four major fuel types: (i ) wood fuel (x1),

(ii) non-gaseous fossil fuels (x2), (iii) gaseous fossil fuels (x3), and (iv) ”other

fuels” (x4). Wood fuel consists of residues from forest cuttings. Non-gaseous

fossil fuel is oil and coal, and gaseous fossil fuel is natural gas and propane.

”Other fuels” include, for example, waste, peat, and industrial hot water.

Firm speci…c prices, pkit, for each fuel type are obtained by dividing the

input value for each aggregate fuel type by the input quantity. Descriptive

statistics for input quantities and input prices are provided in the appendix.

Given the level of aggregation we have a system of four dynamic cost-

share equations, derived from equation (5) and (8). Imposing symmetry

and homogeneity we can write the system as a stochastic normalized three-
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equation system, where we have normalized with the 4th (”other fuels”) cost

share, i.e.,

ln

µ
S1
S4

¶

it

= ´1i + B
x
1d
x
1 ¡BS1 dS1

¡ [°12S¤2 + °13S¤3 + °14 (S¤1 + S¤4)] ln
µ
p1
p4

¶

it

+ (°12 ¡ °24) S¤2 ln
µ
p2
p4

¶

it

+ (°13 ¡ °34) S¤3 ln
µ
p3
p4

¶

it

+¸(z; t) ln

µ
x1
x4

¶

it¡1
+'1t+ "

1
it; (9)

ln

µ
S2
S4

¶

it

= ´2i + B
x
2d
x
2 ¡BS2 dS2

¡ [°12S¤1 + °23S¤3 + °24 (S¤2 + S¤4)] ln
µ
p2
p4

¶

it

+ (°12 ¡ °14) S¤1 ln
µ
p1
p4

¶

it

+ (°23 ¡ °34) S¤3 ln
µ
p3
p4

¶

it

+¸(z;t) ln

µ
x2
x4

¶

it¡1
+ '2t+ "

2
it; (10)

ln

µ
S3
S4

¶

it

= ´3i + B
x
3d
x
3 ¡BS3 dS3

¡ [°13S¤1 + °23S¤2 + °34 (S¤3 + S¤4)] ln
µ
p3
p4

¶

it

+ (°13 ¡ °14) S¤1 ln
µ
p1
p4

¶

it

+ (°23 ¡ °24) S¤2 ln
µ
p2
p4

¶

it

+¸(z;t) ln

µ
x3
x4

¶

it¡1
+ '3t+ "

3
it; (11)
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The equation system (9)-(11) needs some clari…cations. First of all it should

be noted that we allow for …rm speci…c e¤ects, represented by ´ki in each

equation. Moreover, S¤1, S¤2 , S¤3 , and S¤4 represents a speci…c set of cost

shares for each observation that ensures that the property of symmetry is

ful…lled.3 Local symmetry is imposed by using time invariant means,
_

Sk;i, as

speci…c cost shares, and can therefore easily be implemented when estimating

the model. Global symmetry is imposed if the predicted shares,
^
Sk;it, are

used in the estimation (Considine, 1990). When imposing global symmetry,

parameter estimates are obtained through a two-step iterative estimation

method. Below we present estimation results using the latter method. The

error terms, "1it, "
2
it, and "3it, are assumed to have white noise properties.

The parameter ¸(z; t) measures rate of dynamic adjustment. Note that

this parameter is common to all share equations, and it can be interpreted

as the rate of adjustment in total fuel use. Allowing ¸(z; t) to vary across

equations makes the model much more complicated and probably di¢cult

to estimate at all. However, without obvious complications, we can allow

the adjustment parameter to vary across di¤erent types of …rms. Therefore,

the adjustment parameter is allowed to depend upon the vector z, which

contains …rm characteristics and a time trend. To ensure that the time e¤ect

in ¸(z; t) does not capture technological progress, we append a linear time

trend to all three equations. This deterministic trend term serves as a

proxy for e¢ciency gains or technical change in the Swedish heating sector.

The main hypothesis we want to test here is whether the rate of adjustment

or ‡exibility depends on …rm size (total fuel use) and/or the number of

di¤erent fuels used. Concerning the latter we would expect that …rms that

3For a complete derivation of the restrictions neccessary for symmetri and homogeneity,

see Considine and Mount (1984).
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currently are using many di¤erent fuel types are more ‡exible, and hence have

a smaller ¸(z; t). Concerning …rm size the e¤ect is less obvious and is thus

a purely empirical question. More speci…cally the unconstrained adjustment

parameter is speci…ed as:

¸(z; t) = ±0 +
4X

m=2

±1mD1mit +
4X

n=1

±2nD2nit + µt; (12)

where D1mit is a set of dummy variables taking the value of one if the ith

…rm in period t are using m number of fuel inputs, and zero otherwise, D2nit

equals one if …rm i in period t belongs to ”size class” n and equals zero

otherwise. We have divided …rms into four di¤erent size classes based on

total fuel use.4 Also, the adjustment parameter is possibly time dependent.

Summary descriptives for dummies on fuel use and …rm size are provided in

the appendix.

The production of heat is characterized by switching between fuels and

di¤erent fuel mixes. The estimation of (9)-(11) is complicated by the fact

that the variables ln (xk=x4)it¡1 and ln (Sk=S4)it, are unde…ned for many

observations, i.e. xk;it¡1 and/or Sk;it are zero due to zero input in production

of that particular fuel. One solution to this problem is to use only a subset

of the data to estimate the system of share ratios, namely a subset of …rms

that are using strictly positive amounts of all inputs. A drawback with this

approach is that not all information is used, and that the subset of plants

may not be representative for the whole sector. In order to utilize the data

set e¢ciently, but also to test the hypothesis implicit in equation (12), we will

use an approach similar to the approach suggested by Battese (1998).5 Each

equation in the system is therefore modi…ed to account for zero or unde…ned

values in the variables (xk=x4)it¡1 and (Sk=S4)it. The use of this method

4Firms are divided into quartiles (total fuel use).
5For an application of this approach, see Brännlund and Kriström (1999).
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allows us to use the full data set instead of a smaller subset. The dummy

variables dxk and dSk equals one when (xk=x4)it¡1 and (Sk=S4)it are unde…ned,

and zero otherwise. If dxk and dSk equals one, then (xk=x4)it¡1 and (Sk=S4)it

are substituted with ones so that ln (xk=x4)it¡1 and ln (Sk=S4)it equals zero.

Measured at sample means, Sk, the short-run demand elasticities are

calculated as:

ESkk = (°kk + 1)Sk ¡ 1; (13)

and

ESkl = (°kl +1) Sl ; when k 6= l, (14)

where °kk is

°11 = ¡
¡
°12S2 + °13S3 + °14S4

¢

S1
;

°22 = ¡
¡
°12S1 + °23S3 + °24S4

¢

S2
;

°33 = ¡
¡
°13S1 + °23S2 + °34S4

¢

S3
;

°44 = ¡
¡
°14S1 + °24S2 + °34S3

¢

S4
:

The corresponding long-run demand elasticities are given by

ERkl =
ESkl

1¡ ¸(z; t); for all k; l: (15)

From (15) it is clear that the value of the parameter¸(z; t) should be bounded

between 0 and 1. If ¸(z; t) is close to zero the adjustment process is fast, and

slow if ¸(z; t) is close to one. For details on the derivation of the elasticities

see Considine and Mount (1984).
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4 Results

The speci…cation in equations (9) - (11) provides several natural speci…cation

tests. In our model speci…cation the unrestricted model is the one that

includes …xed e¤ects, and all three sets of dummy variables. Thus, our …rst

test is to decide whether …xed e¤ects should be included or not. Conditional

on the outcome of this test we will proceed with all other speci…cation test.

The …nal model speci…cation is selected according to the following likelihood

ratio test scheme:

1. Test no …xed e¤ects against …xed e¤ects. Unrestricted model includes

…xed e¤ects, Battese dummies, …rm characteristics dummies, and the

potential time e¤ect (in ¸ (z; t)).

2. Test if restrictions imposed by setting Battese dummies to zero are

valid. Unrestricted model is determined in step 1.

3. Using the speci…cation determined by step 1 and 2 we here test if the

adjustment rate parameter is constant with respect to …rm character-

istics and time. Unrestricted model is determined in step 2.

4. If the test in step 3 can be rejected, we test if setting the parame-

ters associated with the ”number of fuels”-dummies to zero is a valid

restriction. Unrestricted model is given by step 3.

5. Finally, we test if setting the ”size class”-dummy parameters to zero is

a valid restriction. Unrestricted model determined in step 4.

The time e¤ect is tested with a simple t-test on the parameter µ. The

test results are displayed in Table 1. The likelihood ratio test statistic,

¡2 ln (LR=LU) ; is Â2 distributed with degrees of freedom equal to the number
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of restrictions imposed. The model that the above described …ve step test

scheme generates is chosen as the …nal model, and its estimated parameters

are used when calculating short- and long-run elasticities. The …nal model

parameter estimates are presented in Table 2. When conducting the tests

and when estimating the …nal model, we use the two-step iterative proce-

dure suggested by Considine (1990).6 This estimation procedure generates

parameter estimates that ensures global symmetry.

Table 1. Likelihood ratio tests - model selection.

Test lnLU ln LR ¡2 ln
³
LR
LU

´
restr. crit. val.

(1) -3978 (3) -5293 (10) 2630R 252 350*
(2) -3978 (3) -3996 (3) 36R 6 14
(3) -3978 (3) -3997 (3) 38R 9 19
(4) -3978 (3) -3981 (2) 6A 4 11
(5) -3981 (2) -3994 (2) 26R 4 11

Note: The test statistic is chi-squared. Degrees of freedom equals restrictions imposed.

Number of iterations within parenthesis. R ! not valid restriction. A ! valid restriction.

*Critical value for 300 restrictions according to standard chi-square table.

From Table 1 we conclude that the model speci…cation should include

…xed e¤ects, a non-constant adjustment rate, Battese dummies, and size

dummies. Interestingly we cannot reject the hypothesis that the adjustment

rate is independent of a …rms diversi…cation in terms of the number of fuels

used. Parameter estimates using this speci…cation is presented in Table 2 in

the column labeled Model 1.
6See also Jones (1995) for an application of this estimation procedure.
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Table 2. Model estimation (Iterative FIML).

Parameter Model 1 Model 2
°12 -0.148 (-4.67) -0.098 (-2.99)
°13 -0.263 (-2.09) -0.233 (-1.91)
°14 -0.228 (-7.95) -0.323 (-11.23)
°23 -0.344 (-11.56) -0.235 (-7.27)
°24 -0.329 (-9.68) -0.369 (-12.50)
°34 -0.101 (-4.28) -0.359 (-16.73)
'1 0.011 (2.77) 0.007 (1.81)
'2 0.023 (3.26) 0.017 (2.40)
'3 0.039 (7.53) 0.028 (5.25)

¸(size1) -0.138 (-2.14) 0.623E-07 (0.01)
¸(size2) 0.133 (2.05) 0.206 (2.95)
¸(size3) 0.243 (3.79) 0.231 (3.34)
¸(size4) 0.262 (4.10) 0.248 (3.56)
¸(time) 0.018 (5.70) 0.019 (6.62)
ln L -3981 -4097

Iterations 2 2
In Model 2 the restriction ¸(size1) ¸ 0 is imposed.

Asymptotic t-values within parenthesis.

Note that the Model 1 estimate of ¸(size1) is signi…cant and negative

which, in terms of short- and long-run elasticities, is a violation of the Le

Chatelier principle. Therefore, we restrict ¸(size1) to be greater or equal to

zero in Model 2. The parameter estimates in Table 2 are to a large extent

signi…cantly di¤erent from zero, and the estimates of the adjustment pa-

rameters indicates that adjustment is rather fast. Furthermore the dynamic

adjustment rate seems to decrease with the size of the …rm and over time.

One conclusion is then that the fuel mix is more ”static” for large …rms than

for small ones.

Short-run fuel demand elasticities, based on Model 2 parameter estimates,

are displayed in Table 3.
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Table 3. Short-run demand elasticities.

x1 x2 x3 x4
p1 -0.63 0.21 0.18 0.16
p2 0.37 -0.45 0.31 0.26
p3 0.09 0.09 -0.65 0.07
p4 0.15 0.14 0.15 -0.51

Long-run fuel demand elasticities are shown in Table 4. The long-run

elasticities are evaluated 1996 (i.e. at t = 7).

Table 4. Long-run demand elasticities.

Size 1 Size 2
x1 x2 x3 x4 x1 x2 x3 x4

p1 -0.73 0.24 0.20 0.18 -0.96 0.32 0.27 0.24
p2 0.42 -0.53 0.36 0.30 0.56 -0.70 0.47 0.39
p3 0.10 0.10 -0.75 0.09 0.14 0.14 -0.99 0.11
p4 0.18 0.17 0.17 -0.58 0.24 0.22 0.22 -0.77

Size 3 Size 4
p1 -0.99 0.33 0.28 0.25 -1.02 0.34 0.29 0.25
p2 0.58 -0.73 0.49 0.40 0.59 -0.74 0.50 0.42
p3 0.14 0.14 -1.03 0.12 0.14 0.14 -1.06 0.12
p4 0.24 0.23 0.23 -0.80 0.25 0.23 0.24 -0.82

From Table 3 and 4 we conclude that all of the own-price elasticities

have the expected signs and in the short-run they are all about the same

magnitude. In the case of size class 1 …rms, the long-run elasticities are

slightly higher than the corresponding short-run elasticities, indicating fast

adjustment for small …rms. For …rms in size class 2-4 the long-run elasticities

are higher than for …rms in size class 1. This implies that larger …rms are

relatively slow in adjusting their fuel mix. The demand for wood fuel and non-

gaseous fossil fuels seem to be more sensitive to own-price changes compared

to the demand for gaseous fossil fuels and ”other fuels”. Concerning cross-
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price elasticities we have that price changes of non-gaseous fossil fuels (oil

and coal) induces the largest substitution e¤ects, and that wood fuels and

non-gaseous fossil fuels seems to be the fuels that are easiest to substitute for

each other. Not surprisingly have gaseous fossil fuels the lowest cross-price

elasticities. The latter is in line with the …ndings by for example Atkinson and

Halvorsen (1976). Overall the magnitude of the elasticities are slightly higher

in this study, compared to Brännlund and Kriström (1999). An interesting

conclusion from a policy point of view is then that a subsidy of wood fuel will

increase the use of wood fuel, and decrease the use of other fuels, especially

oil and coal. Similarly we have that an increase of the CO2 tax will induce a

change in fuel mix towards less use of fossil fuels and more use of wood fuel.

However, since the analysis show that ¸(z; t) > 0, the change will take some

time. The estimates of ¸(z; t) implies a mean adjustment period (in 1996) of

1.15 years for size 1 …rms, and about 1.60 years for size 2-4 …rms. In other

words, for size 1 …rms almost 90% and of the long-run response occurs in the

same year as it occurs. For size 2-4 …rms the …rst year long-run response is

about 63%.

5 Simulation

In order to illustrate the substitution possibilities two simple policy changes

will be evaluated. The policy changes will be considered as ”marginal”

changes, which allows us to approximate the short- and long-run quantity

change for a given size class and for input k as:

¢xnk =
4X

l=1

ES;Lkl ¢pl; (16)

where n denotes size class, and S and L indicates short-run and long-run

respectively. Here ¢ denotes the percentage change. Total long-run change
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in the heating sector, i.e. across size classes, is calculated as:

¢Xk =
4X

n=1

wnk¢x
n
k; (17)

where wnk = x
n
k=Xk is the weight for size class n, and Xk is total use of input

k across size classes (1996 size class mean values are used for xnk ). Note that

in the short-run (16) and (17) will be the same since ¢xnk = ¢xk = ¢Xk.

The …rst policy scenario considered involves an increase of the CO2 tax

by 50%. This implies that the average user price of non-gaseous fossil fuels

increases by approximately 27%, and gaseous fuels by approximately 18%,

compared to the price level in 1996.7 All other prices remains unchanged.

The CO2 tax simulations are presented in Table 5.

Table 5. Percentage change in fuel mix due to a 50%
increase of the CO2 tax.

Short-run Long-run
Change (%) size 1-4 size1 size2 size3 size4 total

¢x1 12 13 17 18 19 18
¢x2 -11 -12 16 -17 -18 -17
¢x3 -3 -4 5 -5 -5 -5
¢x4 8 10 13 13 13 13

The second scenario can be viewed as a subsidy for producing wood fuel

that induces a price decrease for the user of wood fuel by 26%. All other

7The change in prices are calculated as:

¢p2 = ¢poil
xoil

x2
+ ¢pcoal

xcoal

x2

¢p3 = ¢pnat:gas
xnat:gas

x2
+ ¢ppropane

xpropane

x2

where

¢pm =
(p0

m + (¿1 ¡ ¿0)) ¡ p0
m

p0
m

where m = oil, coal, natural gas, propane, ¿ = CO2 tax, and a superscript 0 denotes

before tax change, and 1 after tax change.
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prices are unchanged. The results from the wood fuel subsidy simulations

are presented in Table 6.

Table 6. Percentage change in fuel mix due to a subsidy of wood fuel.

Short-run Long-run
Change (%) size 1-4 size1 size2 size3 size4 total

¢x1 16 19 25 26 27 26
¢x2 -5 -6 -8 -9 -9 -9
¢x3 -4 -5 -7 -7 -7 -7
¢x4 -4 -5 -6 -6 -7 -7

In Table 5 it can be seen that a 50% increase of the CO2 will lead to

a substitution from fossil fuels to wood fuel. According to the results the

short-run, or immediate, e¤ect will be a 12% increase of wood fuel in the

whole sector, whereas oil and coal will decrease by approximately the same

number. The use of natural gas will also decrease, but to a lesser extent,

while the use of ”other fuels” (such as waste) will increase. The long-run

increase of wood fuel will, according to the results in Table 5, be 18%, i.e.

50% larger than short-run e¤ect. The results in Table 6 shows that the

qualitative e¤ect from a subsidy to wood fuel will be the same as an increase

of the CO2 tax, i.e. an increase in the use of wood fuel, and a decrease in the

use of fossil fuels. The quantitative e¤ects of the wood fuel subsidy di¤ers

from the e¤ects of the CO2 tax in the sense that all types of fossil fuels are

decreasing by approximately the same amount (in percent). To conclude the

simulations give by the hand that the use of wood fuel will increase and the

use of fossil fuel decrease if the CO2 tax is increased, and/or the use of wood

fuel is subsidized. Finally, the two policy scenarios illustrates a fundamental

result in environmental economics, namely that a policy aiming at reducing

a speci…c type of emissions should be targeted as close to the emission source

as possible. In the present case if the aim is to reduce CO2 emissions, the
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simulation results show that a CO2 tax will be more e¢cient than a wood

fuel subsidy. The reason is that the tax will penalize the use of coal and

oil more than the use of natural gas, compared to the case of a wood fuel

subsidy. A wood fuel subsidy does not discriminate between di¤erent types

of fossil fuels, which is ine¢cient from CO2 point of view.

6 Concluding comments

The main purpose of this study is to estimate how the choice of fuel mix in

the production of heat changes as the relative prices on various fuels changes.

The methodology involves the estimation of a dynamic linear logit model

where the dynamics implicitly are assumed to evolve from costs of adjust-

ments for the various inputs. This paper di¤ers from earlier studies in that

we have a plant level panel data set, and that we allow the adjustment pa-

rameter depend on characteristics of the …rm and time. Thus we are able to

investigate how size and diversi…cation in di¤erent combustion technologies

a¤ect the rate of dynamic fuel substitution due to price changes.

The main results from the empirical analysis is that fuel demand respond

to price changes as we expect, i.e. a price increase of a fuel input decreases the

demand for that input. Furthermore the results shows that the substitution

possibilities, re‡ected by cross-price elasticities, varies between di¤erent pairs

of fuels. The highest cross-price elasticities can be found between wood

fuel and non-gaseous fossil fuels (oil and coal), re‡ecting a relatively large

substitution possibility. Concerning the dynamic adjustment rate the results

reveals that most adjustment takes place within one year, which indicates

high ‡exibility in fuel mix changes for Swedish heating plants.

This type of model can be used to illustrate the e¤ects of various policy
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changes. Here we have simulated the e¤ect due to a change of the carbon

dioxide tax, and an introduction of a wood fuel subsidy. The simulation

results shows that a higher carbon dioxide tax will result in a change of

the fuel mix in the sense that fossil fuels decrease and wood fuel increase,

implying a reduction of carbon dioxide emissions. To conclude we have found

that the linear-logit model may be a suitable model in this case, and that

dynamics relatively easily can be incorporated in a consistent way.

The analysis presented here is of course contingent upon a number of

assumptions, some more crucial than others. Here we will comment on three

very crucial assumptions. The …rst one is that each …rm act as price takers

on all markets. This assumption is reasonable for some fuels such as oil, coal,

and natural gas. However, for wood fuels there are reasons to believe that

this assumption may be violated in practice. Large district heating plants are

in many cases the only large-scale user of wood fuel within an area. This to-

gether with the fact that wood fuels are subject to relatively high transporta-

tion costs may indicate that this market is better described as a monopsony.

The consequences here may be that the estimates are biased, since we do not

consider that the price of wood fuel may be endogenous. A remedy to this

problem may be to employ a ”shadow cost function” approach in line with

Atkinson and Kerkvliet (1989) and Bergman and Brännlund (1995). This,

however, is not feasible with the data set used here, but will be a subject

for future research. A second crucial assumption is that the rate of dynamic

adjustment is equal across demand equations, which can be interpreted as a

cost of adjustment in total fuel use. However, it is not di¢cult to imagine

that the cost of adjustment is linked to individual fuels, due to di¤erences

in technological uncertainty as well as di¤erences in uncertainty concerning

future prices and taxes. Allowing for di¤erent rate of dynamic adjustment is
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not, using the framework presented here, feasible from an empirical point of

view. A third crucial assumption is that the technology is separable, which

in this particular case implies that the rate of technical substitution between

any fuel and capital/labor is zero. This in turn implies that the choice of

fuel mix is independent of the price of capital and the wage rate. Intuitively

we …nd this as a fairly reasonable assumption. Ideally we would like to test

the separability hypothesis along the lines in Atkinson and Halvorsen (1976).

Unfortunately this is not feasible in this case due to lack of data concerning

capital and labor.
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Appendix

Table A1. Descriptive statistics on fuel inputs and prices

1990 1991 1992 1993 1994 1995 1996

x1 18 (48) 21 (56) 24 (60) 30 (72) 36 (94) 38 (97) 47 (131)

p1 118 (28) 131 (45) 120 (37) 124 (53) 120 (54) 117 (53) 98 (26)

x2 53 (152) 54 (182) 47 (168) 51 (181 53 (192) 47 (195) 75 (227)

p2 187 (83) 200 (75) 197 (73) 214 (80 231 (101) 227 (82) 246 (85)

x3 12 (87) 14 (98) 17 (108) 19 (121 20 (128) 20 (122) 24 (125)

p3 184 (34) 225 (42) 216 (52) 202 (26 210 (27) 206 (29) 211 (31)

x4 51 (129) 54 (137) 53 (142) 64 (152) 75 (184) 81 (223) 92 (314)

p4 108 (43) 123 (53) 137 (71) 125 (55) 124 (57) 121 (58) 112 (67)

Nobs 215 214 218 207 206 199 159

Quantities (xk) in GWh, and prices (pk) in SEK/GWh.

Standard deviation within parenthesis.

Table A2. Mean values for dummy variables in ¸ (z; t).

1990 1991 1992 1993 1994 1995 1996
D11 0.25 0.24 0.22 0.18 0.14 0.16 0.10
D12 0.38 0.41 0.43 0.43 0.44 0.42 0.40
D13 0.12 0.10 0.10 0.10 0.11 0.11 0.10
D14 0.23 0.23 0.23 0.27 0.29 0.29 0.33
D21 0.25 0.27 0.25 0.24 0.26 0.29 0.16
D22 0.27 0.25 0.27 0.26 0.25 0.23 0.20
D23 0.25 0.24 0.25 0.24 0.23 0.24 0.33
D24 0.23 0.24 0.23 0.25 0.26 0.24 0.31
Nobs 215 214 218 207 206 199 159
D11 ¡D14 is one if number of fuel inputs are 1-4 respectively.

D21 ¡D24 is one if a …rm belongs to size class 1-4 respectively.
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