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1. Introduction

The paper introduces a time dependent overdispersion or a conditional heteroskedasticity

speciÞcation for count data regression models. Empirically we detect overdispersion when

an empirical variance exceeds a variance implied by a count data model.

In previous count data regressions (e.g., Cameron & Trivedi, 1998) overdispersion (e.g.,

Johnson & Kotz, 1969, ch. 5) and overdispersion with serial correlation in the count data

sequence (e.g., Zeger, 1988) have been introduced by conditioning the count variable on

a random variable or on a random stationary sequence. In these cases the count variable

yt at time t given the random variable εt follows a Poisson distribution (the conventional

base case) with parameter λtεt ≥ 0, where λt may be a function of a vector of explana-

tory variables xt and unknown parameters in a vector β. By assuming that E(εt) = 1,

V (εt) = σ2 and that Corr(εt, εt−k) = ρk, k = 1, 2, . . . , are the autocorrelations of the

stationary sequence {εt}, the unconditional Þrst and second order moments of yt can be
obtained. With these, generalized method of moments (GMM, e.g., Hansen, 1982; Brännäs
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& Johansson, 1994) or other moment estimators (e.g., Zeger, 1988) can be obtained without

a full distributional assumption about εt.

In time series of counts, the process can be more volatile than expected under, e.g., an

overdispersed Poisson assumption. This could for example happen when the mean level

is high. Related phenomena have in recent years been of considerable interest in the Þ-

nancial econometrics literature. Engle�s (1982) autoregressive conditional heteroskedasticity

(ARCH) model and its extensions are based on decomposing an error term of a regression

model as εtσt, where εt is an iid sequence with zero mean and unit variance and where σt
is a conditional (on past observations) standard deviation. In addition, conditional and un-

conditional independence between εt and σt are required. With count (i.e. integer-valued)

data Engle�s decomposition is not a convenient one. Here, we introduce a new mechanism

in terms of moments, which is better suited for count data models.

Section 2 presents the modelling approach and gives some of its implied properties. In

Section 3, we consider ML and GMM approaches to the estimation of unknown model

parameters. We revisit old estimators and adapt them to the new needs of the model.

Section 4 reports the results of a study of self-feeding activity in Þsh. The number

of hourly bites on self-feeders is the manifest variable for the self-feeding activity, and a

137 days long period is examined. The current examination of the data utilizes a different

modelling approach than the original study of Brännäs, Berglund and Eriksson (2001). The

Þnal section concludes.

2. Model Approach

The basic building block for most count data regression modelling is the Poisson model.

The Poisson distribution is based on independent increments which implies that for a count

variable yt at time t

E(yt) = E(yt|Ft−1) = V (yt) = V (yt|Ft−1) = λt,
where Ft−1 = (Yt−1,Xt) is the information set with Yt = (y1, . . . , yt) and Xt = (x1, . . . ,xt).
Typically,

λt = exp(xtβ),

where xt is a vector of explanatory variables and β is a vector of parameters. In this model

the unconditional and conditional heteroskedasticities are identical and observations are

serially uncorrelated. The means and variances are equal, which is a restrictive speciÞcation

with respect to various time series applications.

A common feature of empirical count data is that the variance exceeds the mean. This is

usually modelled in terms of an overdispersed Poisson model. Here, yt is Poisson distributed

conditionally on a latent random variable εt so that

E(yt|εt) = V (yt|εt) = εtλt.
Conventionally one assumes {εt} to be an iid sequence with E(εt) = 1 and V (εt) = σ2. The
conditional and unconditional moments are then internally equal, i.e.

E(yt) = E(yt|Ft−1) = λt
V (yt) = V (yt|Ft−1) = λt + σ2λ2t , (1)
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but the means and variances are no longer equal. When εt is assumed gamma distributed

the unconditional yt has a negative binomial, NB2, distribution. To estimate, either such a

fully parametric model as NB2 may be estimated by ML or, e.g., a GMM estimator based

on only the given moments may be applied.

Zeger (1988) suggested an extension of the overdispersed Poisson model for time series

data. One sets E(yt|εt) = V (yt|εt) = εtλt and assumes the stationary {εt} sequence to
again have E(εt) = 1 and V (εt) = σ2. Besides implying overdispersion this model gives

serially correlated counts, though conditionally on εt and εs, respectively, yt and ys are

uncorrelated. The unconditional mean and variance are those of the overdispersed model.

For this model one may show that

E(yt|Ft−1) = λtE(εt|Ft−1)
V (yt|Ft−1) = λtE(εt|Ft−1) + λ2tV (εt|Ft−1). (2)

Consider as an example the AR(1) model εt = θεt−1 + (1 − θ) + ut, where {ut} is a zero
mean random sequence with variance σ2u. The parametrization is such that E(εt) = 1. Then

E(εt|Ft−1) = θεt−1 + (1− θ) and V (εt|Ft−1) = V (εt) = σ2u. Hence

E(yt|Ft−1) = [θεt−1 + (1− θ)]λt
V (yt|Ft−1) = [θεt−1 + (1− θ)]λt + σ2uλ2t .

In this case the conditional mean is affected by the correlation structure in {εt} in the same
way as the conditional variance is.

The Zeger & Qaqish (1988) model contains lagged yt−i, i > 0, variables in the λt function
and speciÞes a conditional model for yt given past observations. This approach can be

extended by introducing an εt as in either of the two previous speciÞcations. It is quite

straightforward to demonstrate that no changes to the conditional moments will arise. The

only exception is the presence of lagged y variables in λt.

To add ßexibility in the conditional heteroskedasticity we may consider two approaches.

First, we redeÞne σ2 to become time dependent and possibly dependent on previous obser-

vations. By this the size of the overdispersion becomes time dependent. Second, we alter

the basic conditional moment expressions.

Consider the overdispersed Poisson model and let all assumptions used above remain

true, but let the variance of εt be a function of past observations, i.e. V (εt) = σ2t (Ft−1).
This time dependence will not imply dependence between successive counts nor will it affect

the conditional and unconditional means. However, the conditional variance changes into

V (yt|Ft−1) = λt + σ2t (Ft−1)λ2t . (3)

Corresponding results hold for the more general Zeger or Zeger & Qaqish models.

This then adds ßexibility for the model speciÞcation, but suitable speciÞcations of

σ2t (Ft−1) need to be considered. To guarantee that σ2t remains positive an exponential

form appears reasonable. Corresponding to exponential generalized ARCH or EGARCH

speciÞcations (Nelson, 1991) we could specify, say,

σ2t = exp
¡
α0 + α1 lnσ

2
t−1 + α2u

2
t−1
¢
,
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where ut = yt − λt is an error term. Given this speciÞcation GMM estimation or some

type of two-stage estimator of the αi parameters are feasible. Alternatively with εt gamma

distributed, yt follows a NB2 distribution and then ML estimation is feasible.

If we wish to have identical conditional and unconditional means but with a more variable

conditional heteroskedasticity we could also start with

E(yt|εt,σt) = V (yt|εt,σt) = λt + (εt − 1)σtλt,
where {εt} is an iid sequence with unit mean and variance. Then σt is the conditional
standard deviation of εt and could, e.g., depend on past observations. For this model

E(yt) = E(yt|Ft−1) = λt
V (yt) = λt + E(σ2t )λ

2
t

V (yt|Ft−1) = λt + σ
2
tλ
2
t .

An obvious drawback with this speciÞcation arises from the requirement that λt + (εt −
1)σtλt ≥ 0. This has a bearing on the functional form for σt for εt < 1. If, for example,

εt = 0 then σt < 1 must hold, while no such restriction need to hold for εt > 1.

Approximately, the same moment properties can be obtained from the conditional rep-

resentation λt exp(εtσt). If E(εt) = 0, V (εt) = 1 and εtσt is small, a Þrst order Taylor

expansion gives E(exp(εtσt)) ≈ 1 and V (exp(εtσt)) ≈ 1 + σ2t . For this speciÞcation there
are only size restrictions on εtσt. Note that a conditional speciÞcation λtεtσt, which appears

closer to the continuous variable speciÞcation, would with E(εt) = 1 result in a model where

it would be more difficult to separate the mean and variance effects. We could obviously

also express the model on a form closer to the mainstream conditional heteroskedasticity

literature. By using yt = E(yt|Ft−1) + ut, where E(ut) = 0 and V (ut) = λt, we get results
corresponding to the Poisson model. If we set ut = εtλt withE(εt) = 0 and V (εt) = σ2t (Ft−1)
we get V (yt|Ft−1) = λt + σ2t (Ft−1)λ2t . Distributionally this route is far from easy.

In the generalized model of Winkelmann & Zimmermann (1991) the conditional variance

is of the form λt + (σ
2 − 1)λk+1t , where both σ2 and k are treated as unknown parameters.

Therefore, in this model a quadratic effect is not assumed. Our speciÞcation is more general

in the sense that a quadratic effect can be very strongly present when σ2t is large, and

the conditional variance can be close to the variances of the negative binomial (NB1 with

variance λt(1 + σ2t )) or the Poisson for smaller σ
2
t .

3. Estimation

We discuss some likelihood based approaches to estimation and GMM estimation. The un-

known parameter vectors are β in the λt = exp(xtβ) function and α in the σ2t speciÞcation.

For a general case, the log-likelihood function conditional on the Þrst observation is

lnL =
TX
t=r

lnLt =
TX
t=r

ln f(yt|Ft−1),

where r is one plus the largest lag found in the conditional variance expression or in λt. The

conditional density

f(yt|Ft−1) =
Z ∞

0

f(yt|εt, Ft−1)f(εt) dεt = Eε [f(yt|εt, Ft−1)] (4)
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obviously requires distributional assumptions on the conditional variable yt and on εt. For

the former we assume throughout a Poisson distribution. Unfortunately, there are in general

no strong justiÞcations for an assumption about εt.

If the basic Poisson model is used for estimation, i.e. no account is given to σ2t , it is

straightforward to show the consistency and asymptotic normality of the ML estimator of

β. The covariance matrix estimator is a simple modiÞcation (from a constant σ2 to a time

dependent σ2t ) of the sandwich estimator for overdispersed data (e.g., Gourièroux, Monfort

& Trognon, 1984; Cameron & Trivedi, 1998, p. 65):

V(�β) =

Ã
TX
t=r

λtx
0
txt

!−1Ã TX
t=r

(λt + σ
2
tλ
2
t )x

0
txt

!Ã
TX
t=r

λtx
0
txt

!−1
.

The estimator is evaluated at the Poisson ML estimates, but also requires estimation of a

σ2t model. An estimator that avoids this problem is of the form:

V(�β) =

Ã
TX
t=r

λtx
0
txt

!−1Ã TX
t=r

(yt − λt)2x0txt
!Ã

TX
t=r

λtx
0
txt

!−1
.

Hence, if σ2t is considered a function of no interest the Poisson ML estimator can be ap-

plied and using a sandwich covariance matrix estimator, testing about functions of β is

straightforward.

A technically convenient assumption about εt is the gamma distribution with expected

value one and variance σ2t , i.e.

f(εt) =
1

Γ(σ−2t )(σ2t )σ
−2
t

ε
σ−2t −1
t exp(−εt/σ2t ).

We get the negative binomial distribution (NB2)

f(yt|Ft−1) = Γ(yt + σ
−2
t )

yt! Γ(σ
−2
t )

µ
λt

λt + σ
−2
t

¶yt µ σ−2t
λt + σ

−2
t

¶σ−2t
(5)

and using ln
£
Γ(y + σ−2)/Γ(σ−2)

¤
=
Py−1
j=0 ln(j+σ

−2) and λt = exp(xtβ) the log-likelihood
function is

lnL =
TX
t=2

lnLt =
TX
t=r

yt−1X
j=0

ln(j + σ−2t )− ln yt!− (yt + σ−2t ) ln[1 + σ2tλt]

+ yt lnσ
2
t + yt lnλt

¤
.

Cameron & Trivedi (1998, p. 71) and others give the likelihood equations ∂ lnL/∂β and

∂ lnL/∂σ2 for the the constant σ2 parameter NB2 model. For the time dependent model the

likelihood equation for β is more complicated if σ2t is a function of ut = yt−λt. The gradient
for a particular σ2t model is given in the Appendix. With other distributional assumptions

about εt there is, in general, no explicit solution arising from (4).

An obvious approach is to use numerical integration for the integral in (4). For the log-

normally distributed εt Gaussian-Hermite quadrature has been used by, e.g., Hinde (1982).
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In this case the log-likelihood function takes the form

lnL =
TX
t=r

ln
MX
j=1

wj
exp(− exp(ψj,t) + ytψj,t)√

π yt!
,

where ψj,t = xtβ + vj
p
2 ln(1 + σ2t )− ln(1 + σ2t )/2. Here, wj and vj , j = 1, . . . ,M , are the

weights and abscissas for the quadrature. Obviously, other distributional assumptions may

lead to integrals that are better approached by other devices.

An alternative likelihood based approach is the simulated maximum likelihood (SML)

estimator of Gourièroux & Monfort (1991). By this, one can avoid the complications due to

nonexplicit solutions in (4). Numerical integration is then replaced by simulation. A natural

estimator of f(yt|Ft−1) = Eε [f(yt|εt, Ft−1)] is the sample moment, i.e.

�f(yt|Ft−1) = 1

S

SX
s=1

f(yt|ε(s)t , Ft−1),

where ε
(s)
t is the sth randomly generated replication from some assumed marginal distribu-

tion for εt having mean one and variance σ
2
t . The estimator is used to obtain numerical

values on the log-likelihood function, i.e.

lnLS =
TX
t=r

ln
1

S

SX
s=1

f(yt|ε(s)t , Ft−1),

for given values on θ = (β0,α0)0 ∈ Θ and where the conditional density is Poisson. The

resulting SML estimator is obtained as �θ = argmaxθ∈Θ lnLS. The asymptotic properties
of the estimator are summarized by Gourièroux & Monfort (1996, ch. 3).

Estimation is also feasible under weaker assumptions using the generalized method of

moment (GMM) estimator. The GMM estimator is consistent and asymptotically normal

under weak assumptions (e.g., Hansen, 1982; Davidson & MacKinnon, 1993). As the es-

timator is based on the conditional moment structure, no full distributional assumptions

are required for neither the conditional distribution of yt nor for εt. We may therefore

expect the estimator to be more robust with respect to distributional misspeciÞcation, but

to be less efficient than an ML estimator should the distributional assumptions be cor-

rect. As a moment condition for the conditional mean function the likelihood equation

(T − r)−1PT
t=r x

0
t(yt − λt) = (T − r)−1PT

t=rm1t is an obvious candidate. To generate

moment conditions for the conditional heteroskedasticity parameters the variance expres-

sion in (3) is basic. To catch the conditional variance we may depart from V (yt|Ft−1), and
use (yt − λt)2 − λt − σ2tλ2t as a residual in forming conditions. In this case too, xt can
be used as instruments. The resulting moment condition is (T − r)−1 PT

t=rm2t. We set

m0 = (T − r)−1[PT
t=rm

0
1t :

PT
t=rm

0
2t].

The GMM estimator minimizes the criterion function

q =m0W−1m,

where W in a Þrst step is set equal to the identity matrix. For the second step �W =

(T − r)−1PT
t=r �mt �m

0
t is based on the Þrst step estimates. The estimator of the asymptotic

covariance matrix is

V(�θ) = (T − r)−1
³
�G0 �W−1 �G

´−1
,
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Figure 1: Autocorrelation functions for yt and y2t .

where G = ∂m/∂θ0 andW are evaluated at Þnal estimates.

This basic GMM framework can be extended by incorporating additional instrumental

variables beyond xt. Examples of such variables could be lagged variables, though lagging,

e.g., dummy and trend variables is not a good idea, and other explanatory variables. Another

extension is to include more moment conditions arising, e.g., from a restriction of no serial

correlation. The GMM estimator is more efficient the more moment conditions that are

incorporated.

For testing purposes Wald, likelihood ratio or Lagrange multiplier types of tests against

conditional heteroskedasticity and/or overdispersion can be obtained for testingα = 0, while

testing only the �slope� parameters of this vector in the σ2t model is a test against conditional

heteroskedasticity. Such tests can be based on either the ML or GMM approaches. An overall

test of the GMM tested model is (T − r)�q a∼ χ2(l), where l is the number of overidentifying
restrictions.

4. Empirical Results

The illustration is based on data from a related study of Brännäs et al. (2001) on time

learning and anticipatory activity in Þsh. The studied time series records the numbers of

trigger actuations of self-feeders, hourly over 137 days, for 84 experimental Arctic charr

Þsh. Observations started January 29, 1999, and the time series length is T = 3312. In the

study of Brännäs et al. (2001) the speciÞcation was static using hourly dummy variables

and Poisson ML estimation was employed with a robust covariance matrix estimator. In

this study we employ a dynamic model and explicitly model σ2t .

The autocorrelation functions for yt and y2t indicate that the series contain a 24 hour

cycle and a trend component, cf. Figure 1.

Table 1 gives the parameter estimates for a model without added conditional het-

eroskedasticity (estimated by Poisson ML) and three speciÞcations that encompass added

conditional heteroskedasticity (estimated by negative binomial, Poisson-lognormal ML with

M = 100 and GMM). The period variables are throughout dummy variables. Periods 1, 3
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Table 1: Poisson, negative binomial (NB2) and Poisson - lognormal ML and GMM estimates.

Negative Poisson �

Poisson ML Binomial ML Lognormal ML GMM

Variable Est s.e. Est s.e. Est s.e. Est s.e.

λt-part

y∗t−1 0.357 0.029 0.475 0.027 0.395 0.027 0.369 0.030

y∗t−2 -0.097 0.022 -0.136 0.029 -0.077 0.026 -0.063 0.022

y∗t−24 0.166 0.028 0.307 0.024 0.118 0.024 0.202 0.028

dt−1 -0.324 0.121 -0.081 0.066 -0.468 0.081 -0.060 0.101

dt−2 -0.202 0.077 -0.445 0.068 -0.292 0.074 -0.042 0.073

dt−24 -0.512 0.115 -0.303 0.071 -0.597 0.082 -0.705 0.106

Trend 1.726 0.373 0.838 0.300 0.721 0.318 0.751 0.339

Seasonal 0.542 0.065 0.635 0.050 0.453 0.066 0.575 0.063

Period 1 0.388 0.279 -0.056 0.212 -0.632 0.221 -0.050 0.251

Period 2 -0.064 0.185 0.116 0.168 -0.623 0.167 -0.304 0.172

Period 3 0.403 0.124 -0.053 0.127 -0.266 0.120 0.117 0.115

Period 4 -0.291 0.092 -0.098 0.110 -0.905 0.100 -0.273 0.091

Food 1.101 0.101 0.375 0.111 1.158 0.091 0.779 0.099

Pre-food 0.975 0.132 0.645 0.147 0.606 0.146 0.817 0.124

Post-food 0.075 0.108 -0.662 0.185 0.187 0.124 -0.127 0.105

Constant 0.019 0.355 0.287 0.294 1.386 0.311 0.636 0.326

EGARCH-part

Constant 0.406 0.036 1.016 0.116 0.403 0.082

ut−1 -0.015 0.001 -0.034 0.004 -0.036 0.005

ut−2 0.004 0.002 0.010 0.004 -0.035 0.015

ut−24 -0.005 0.001 -0.014 0.004 -0.037 0.007

Seasonal -0.797 0.054 -1.336 0.135 -1.844 0.494

st−1 0.448 0.041 0.486 0.047 0.193 0.207

lnL -12974 -7124 -7047

q, p-value 21.77 0.02

Estimation by repeated use of a simplex algorithm. For the negative binomial and Poisson-log-

normal ML estimators a BHHH covariance matrix estimator based on numerical derivatives is

employed.

Table 2: Constants ci for Poisson and negative binomial ML and GMM estimates.

Negative Poisson �

Poisson ML Binomial ML Lognormal ML GMM

Est s.e. Est s.e. Est s.e. Est s.e.

c1 0.404 0.05 0.396 0.03 0.306 0.08 0.850 0.03

c2 8.024 1.19 9.281 14.4 44.35 153 1.948 0.08

c24 0.046 0.02 0.373 0.10 0.006 0.02 0.030 0.01
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and 5 (base period) provided free access to food 24 hours a day. In Period 2 food is available

1200-1400, and in Period 4 0900-1100. Period lengths varied between 12 and 55 days. Pre-

food is a dummy variable for the hour before restricted feeding became available in Periods 2

and 4, while Post-food is a corresponding dummy variable for the hour after food availability.

The trend variable is deÞned as t/T and the seasonal variable as sin(2π(h− 6)/24) with h
the hour within the day. The light and dark periods were both uninteruptedly 12 hours long

throughout. The model is of the Zeger & Qaqish (1988) type that contains lnmax(yt−i, ci)
as explanatory variables. The respeciÞcation of Cameron & Trivedi (1998, pp. 239-240)

uses y∗∗t−i = yt−i and dt−i = 0 for yt−i > 0 and y
∗∗
t−i = 1 and dt−i = 1 for yt−i = 0. Finally,

y∗t−i = ln(y
∗∗
t−i) and dt−i, i = 1, 2 and 24 are used as explanatory variables. If the parameter

in front of y∗∗t−i is ρi the parameter in front of dt−i is ρi ln ci. Then �ci = exp( dρi ln ci/�ρi).
The conditional variance speciÞcation is σ2t = exp(st), where st = α0+α1ut−1+α2ut−2+

α24ut−24+ γ1Seasonalt+ γ2st−1. To arrive at this speciÞcation a number of model versions
were estimated by GMM and compared with respect to GMM criterion values and whether

variables had signiÞcant effects. There is signiÞcant overdispersion (p = 0) after Poisson

ML estimation and employing a likelihood ratio test against either the negative binomial

or Poisson-lognormal model the Poisson model can be rejected. The Poisson model is also

rejected against a constant σ2, negative binomial model. The overall test of the GMM esti-

mated model (p = 0.02) raises some questions about the validity of the model speciÞcation

or of the used instruments in X.

In most cases the signs and sizes of estimates as well as standard errors remain the same

across the estimated models. The biologically most interesting effects are those of the food

availability variables. During food availability periods the number of feeder actuations are

signiÞcantly larger than when no food is available. There is a signiÞcant anticipatory effect

with an increased number of actuations before food becomes available, while the effect after

such periods is generally not signiÞcant. Qualitatively identical Þndings were reported by

Brännäs et al. (2001). Figure 2 suggests that the effect of time restricted feeding gives larger

actuation frequencies during the observed high activity hours than if feeding is available

throughout the day. The base case is related to that of Figure 3, while the alternative of

free access is obtained by setting the Period 4 and food dummy variables equal to zero

throughout the period.1

The estimates of the constants ci are given in Table 2. With the exception of the �c2s

the sizes are reasonable as we expected estimates smaller than one. When it comes to the

estimates in the σ2t speciÞcation the estimates of lagged ut−i are quite small and in the
GMM case of quite similar size. Note that the effects of lagged ut−i are asymmetric with
large effects of negative residuals and much less effect of positive ones (cf. Figure 3). The

effect of the seasonal variable is negative which dampens the conditional variance at peak

hours in activity (see also Figure 4). The persistence effect of st−1 is positive but small for
GMM and not too large for the other estimators.

Figure 3 shows Þtted values after GMM estimation. There is a reasonable Þt for lower

counts, but for this selection of hours we evidently miss the high frequency noted at 10 AM

for the Þrst day and the one at 9 AM for the second day. The conditional standard deviation

has a pattern not unlike the observed outcome though of smaller amplitude. Note that σ2t

1The dynamic simulation starts from the identity yt = λt(yt−1, yt−2, yt−24,xt) + ξt, and sets ξt = 0,

since E(ξt) = E(yt − λt) = 0.
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Figure 2: Simulated dynamic effects of a change in Period 4 to free access (dashed line) from

time restricted feeding (solid line) starting at hour number 2900.
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Figure 4: Observed number of trigger actuations (circle) with Þtted values (�λt, solid line),

conditional standard deviation ((�λt + �σ
2
t
�λ
2

t )
1/2, dot-dashed line) and conditional variance

function (�σ2t , dashed line) for a 50 hour period. Based on GMM estimation of full model.

varies contra-cyclically with large values when �λt is small while dampening the conditional

variance (or standard deviation) when �λt is large.

5. Conclusions

The paper has suggested an extension of the overdispersed Poisson regression model or

some of its conditional relatives to include time dependent overdispersion. This renders a

more ßexible conditional heteroskedasticity or variance function. ML estimation using the

negative binomial and Poisson�lognormal models is developed. The Poisson ML estimator is

consistent and asymptotically normal but empirically a robust covariance matrix estimator

should be used. We also consider a basic framework for GMM estimation. More instruments

and possibly employing additional moment conditions would probably reduce the estimated

standard errors of this estimator.

Empirically we found that Arctic charr exhibits a feeding activity that is increased during

the hours of restricted feeding. There is also a signiÞcant and positive anticipatory effect.
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Appendix

The gradient vector for the negative binomial model in (5)-(6) with σ2t = exp(st), where

st = α0 +
Pq
i=1(α1iut−i + α2iu

2
t−i) +

Pp
i=1 α3ist−i, with ut = yt − λt, is:

∂ lnLt
∂β

= −
yt−1X
j=0

ús0t
1 + jσ2t

+ (x0t + ús
0
t)
yt − λt
1 + σ2tλt

+ ús0tσ
−2
t ln(1 + σ2tλt)

∂ lnLt
∂σ2t

=
1

σ4t

ln(1 + σ2tλt)− yt−1X
j=0

1

j + σ−2t

+ x0t yt − λt1 + σ2tλt

∂σ2t
∂α

=
∂ lnLt
∂σ2t

∂σ2t
∂α

,

where

∂σ2t/∂β = (∂st/∂β)σ
2
t = ús

0
tσ
2
t

∂σ−2t /∂β = −ús0tσ2t
ús0t =

qX
i=1

x0t−iλt−i(α1i − 2α2iut−i) +
pX
i=1

α3i ús
0
t−i

∂st/∂α0 = 1 +

pX
i=1

α3i ús
(0)
t−i

∂st/∂α11 = ut−1 +
pX
i=1

α3i ús
(11)
t−i

. . .

∂st/∂α3q = st−q +
pX
i=1

α3i ús
(3q)
t−i

and all initial conditions can be set at, e.g., úsr−1 = . . . = ús1 = 0.
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