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1. Introduction

In this paper we study price and volatility transmissions from the two leading US and

Russian markets to Baltic states’ stock markets. The Baltic stock exchanges started

trading only quite recently. The Lithuanian stock exchange (VSE) re-opened in 1993. The

trading on the Latvian stock exchange (RSE) started in mid 1995, while Estonia (TSE)

opened up its stock exchange in the spring of 1996. All three markets have performed

very well. For example, in 2004 the stock index of the RSE grew by 43.5 percent, and

the TSE and VSE by 57.1 and 68.2 percent, respectively. Over the same period the

NYSE composite (US) and the RTS (Russia) indices increased by 12.6 and 8.3 percent,

respectively.

A substantial amount of research has been devoted to studying links between national

stock markets. Most studies examine mean and volatility spillovers across international

stock markets and some of the emerging markets, while less attention has been paid to the

transition economies of Central and Eastern Europe. Hermes and Lensink (2000) review

some issues related to the role of stock markets of transition economies. Rockinger and

Urga (2000) test whether some of the transitional stock markets become more efficient

over time and more integrated with other established markets. No Baltic stock markets

are included in the study. Pajuste et al. (2000) study different aspects of the risk structure

and its role in the return generating process in five Central and Eastern European markets,

including Estonia. Kairys et al. (2000) study the impact of changes in the microstructure

of the Riga Stock exchange (RSE) on the liquidity in this market.

It is fairly well established that not only domestic new information but also information

from other markets can be incorporated in the pricing of domestic securities. In this paper

we are interested in the extent to which Baltic stock market index returns are influenced by

news arriving from Russia (Moscow, RTS) and US (New York, NYSE Composite). News

affecting the price process are divided into good and bad news. The term "good news" is

used to denote positive past returns, whereas the term "bad news" denotes negative past

returns.

We are also interested in whether changes in volatility in Baltic stock markets are

related to changes in return volatilities observed in the Russian and US markets. Volatility

shocks from abroad are divided into "high" and "low" volatility. Ross (1989) argues that

market volatility is related to the flow of information to the market. Then, assuming that

the information from the Russian and US stock markets is relevant for three Baltic stock

markets, the return volatility might be affected by volatility shocks from abroad.

The current study builds on previous research in several ways. First, we study price

and volatility transmission from the two US and Russian marketplaces to three Baltic

markets. Earlier studies have found empirical evidence of significant return and volatility

spillovers from the US market to other national stock markets (e.g., Liu and Pan, 1997;

Eun and Shim, 1989; Koch and Koch, 1991). This is consistent with the US market being
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the most influential producer of information. Tse et al. (2003) found that the volatility of

the Warsaw Stock Exchange is not influenced by past US market volatility, but they also

found that there is a significant spillover in the return from the US market on the Polish

stock market. Spillovers from the Russian stock market may be explained by the economic

and historical ties between the countries. In addition, Pajuste et al. (2000) argue that

geographic proximity can measure the level of a country’s integration, i.e. countries that

are closer to Russia are more influenced by its risk. Obviously, an interesting issue is

whether the Baltic States stock markets are more influenced by news from the major US

stock markets rather than by the Russian market.

We employ an econometric model that is designed to catch asymmetric impacts of good

and bad news on the price and volatility. For instance, Black (1976) noted the asymmetric

impact of good and bad news on volatility, where bad news increase volatility more than

good news. This asymmetry is sometimes described as a leverage effect. However, for

emerging markets it is possible that positive innovations increase volatility more than

negative innovations. Rockinger and Urga (2000) found this pattern for Hungary, and

suggest that "for countries, suffering from low liquidity, one can imagine scenarios where

good news can lead to increased liquidity, which in turn can lead to increased volatility as

investors rebalance their portfolios". This feature is called the liquidity hypothesis. Similar

results were found by Bekaert and Harvey (1997) for some emerging countries. Previous

studies (e.g., Koutmos and Booth, 1995) have found that the volatility transmission is

also often asymmetric with respect to positive and negative innovations. It is also possible

that the conditional mean responds asymmetrically to past innovations (Koutmos, 1998;

Wecker, 1981). To capture such features we combine the ARasMA model of Brännäs and

De Gooijer (1994) for the conditional mean with an asymmetric parameterization of the

conditional variance. The volatility process is modelled as an asymmetric extension of the

quadratic GARCH model of Sentana (1995). The resulting ARasMA-asQGARCH model

(Brännäs and De Gooijer, 2004) allows us to detect asymmetry in both conditional mean

and variance of stock return data. We extend this model to also capture any potential

asymmetric impact of good and bad news from the two US and Russian marketplaces.

The remainder of the paper is organized as follows. Section 2 introduces the ARasMA-

asQGARCH model and presents the estimation method. Section 3 discusses the data and

Section 4 gives the empirical results. The major findings are summarized in the final

section.

2. Model and Estimation

To account for the possibly asymmetric effects of news in Moscow (RTS) and New York

(NYSE) on the stock market indices of the Baltic states we expand the conditionally

heteroskedastic ARasMA specification of Brännäs and De Gooijer (2004), hereafter BDG

(see also Wecker, 1991; Brännäs and De Gooijer, 1994). The news effects are allowed
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to impact both the conditional mean (return) and heteroskedasticity (volatility or risk)

functions.

Let {ut} be a real-valued discrete-time stochastic process generated by

ut = εtht (1)

where {εt} is a sequence of independent and identically distributed random variables with
mean zero and unit variance, and the conditional standard deviation ht is independent of

εt as well as non-negative for all t. Further, let

u+t = max(0, ut) = ε+t ht and u−t = min(ut, 0) = ε−t ht

where ε+t = max(0, εt) and ε
−
t = min(εt, 0). In an analogous way, let x

+
t = max(0, xt) and

x−t = min(0, xt) be the positive and negative return at time t, respectively, in the Moscow
and/or New York return series.

The autoregressive asymmetric moving average (ARasMA) model of order (p, r, q), is

then defined as

yt =

pX
i=1

αiyt−i +
rX

i=1

¡
γ+i x

+
t−i + γ−i x

−
t−i
¢
+ β0 + ut +

qX
i=1

¡
β+i u

+
t−i + β−i u

−
t−i
¢

=

pX
i=1

αiyt−i +
rX

i=1

¡
γ−i xt−i + γ∇i I(xt−i ≥ 0)xt−i

¢
+ β0 (2)

+ut +

qX
i=1

¡
β−i ut−i + β∇i I(ut−i ≥ 0)ut−i

¢
.

Here, γ∇i = γ+i − γ−i , i = 1, . . . , r, β∇i = β+i − β−i , i = 1, . . . , q, and I(·) is the indicator
function. Since the values of the β+i and β−i parameters at the ith lag may be different,
the response to equally sized positive and negative shocks may be different or asymmetric.

The inherent asymmetry of the asMA model was illustrated numerically by Brännäs and

Ohlsson (1999). Obviously, if γ+i = γ−i for all i, the response to positive and negative

news in the Moscow and/or New York return series is symmetric.

The conditional mean (return) of yt given past observations is

E(yt|Yt−1) =
pX

i=1

αiyt−i +
rX

i=1

¡
γ+i x

+
t−i + γ−i x

−
t−i
¢
+ β0 +

qX
i=1

¡
β+i u

+
t−i + β−i u

−
t−i
¢
.

Note that containing several rather than one xt series in the model presents no additional

difficulty.

Various models have been proposed to represent the conditional heteroskedasticity h2t
in (1). Sentana (1995) introduced the QGARCH(P,P ) model and BDG the Asymmetric

Quadratic Generalized ARCH (asQGARCH) model of order (Q;P,P ). To account for

asymmetric effects through a variable zt from Moscow and/or New York we expand the
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latter to obtain

h2t = α0 +
RX
i=1

(η+i z
+
t−i + η−i z

−
t−i) +

QX
i=1

(α+i u
+
t−i + α−i u

−
t−i) +

PX
i=1

κiu
2
t−i +

PX
i=1
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2
t−i
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¡
η−i zt−i + η∇i I(zt−i ≥ 0)zt−i

¢
+

QX
i=1

¡
α−i ut−i + α∇i I(ut−i ≥ 0)ut−i

¢
(3)

+
PX
i=1

κiu
2
t−i +

PX
i=1

ρih
2
t−i.

The first term of this conditional variance (risk) function accounts for asymmetric effects

in either or in both of the Moscow and New York series around some threshold level z̄, the

second block on the right-hand side describes the asymmetry in the conditional variance.

The former part of u+t and u−t may cause a problem with the positivity of h2t unless

parameters are constrained, e.g., such that the effects of ut−i and u2t−i are positive. In (3)
positive shocks have a different effect than negative shocks. The response of the process

is parabolic, though not symmetric around zero.

If α∇i =0 for all i = 1, . . . , Q and Q = P , (3) reduces to an extended QGARCH(P,P ).

We also see that when α+i = α−i = 0, (3) simplifies to the extended GARCH model of order
(P,P ) introduced by Bollerslev (1986). Note, however, that in the case of Q = P = 1, (3)

differs from the so-called Asymmetric Threshold GARCH (asTGARCH) of order (1;1,1) of

Koutmos (1999) which is an asymmetric analogue of the TGARCH(1,1) model of Zakoïan

(1994).

Unconditional moments are hard to obtain, but are given for the case of no xt and zt

variables in BDG and for a model with constant h2t by Brännäs and De Gooijer (1994)

for normally distributed {εt} sequences. Some related model properties for log-generalized
gamma and Pearson IV distributed {εt} sequences are discussed by Brännäs and Nordman
(2003ab).

2.1 Empirical Modelling Strategy

To find empirical models we adopt a procedure in four steps. First, we find the best

ARasMA model for each Baltic stock exchange. Next, in the second step this ARasMA

model is augmented with an asQGARCH model for conditional heteroskedasticity. In a

third step, we expand each specification of the second step by, in turn, including Moscow

and New York both in the conditional mean and conditional variance functions. This

allows us to test whether Moscow and/or New York cause mean returns or volatilities.

The conditional mean and variance functions are allowed to respond asymmetrically to

news in the Moscow and New York series. Finally, both Moscow and New York are

incorporated in the same model. In each step we employ the AIC criterion to find a

parsimonious parametrization.
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2.2 Estimation

Conditional on Yt−1 = (y1, . . . , yt−1) the prediction error

et = yt −E(yt|Yt−1)

has the distribution of εtht. BDG assumed {εt} to be normally distributed so that the
conditional density of yt given Yt−1 is normal with mean E(yt|Yt−1) and variance h2t . The
log-likelihood function to be maximized with respect to the unknown parameters is then

c =
TX
t=r

lnLt ∝ −1
2

TX
t=r

µ
lnh2t +

e2t
h2t

¶
.

The log-likelihood function is not continuous in the indicator function. Qian (1998) derived

asymptotics for the maximum likelihood estimator for a two regime self-exciting threshold

model where errors are not necessarily normally distributed. This particular model is dual

to an asMA model which is a special case of (2). Hence, the usual asymptotic inference on

the estimated parameters still holds and then also applies to an asMA model. The same

indicator functions re-appear when the model contains conditional heteroskedasticity in

the form of (3). We propose that consistency and asymptotic normality remain to hold.

As an estimator of the covariance matrix we use the robust sandwich form

Cov(θ̂) =

Ã
TX
t=r

∂2 lnL

∂θ̂∂θ̂
0

!−1 TX
t=r

∂ lnLt

∂θ̂

∂ lnLt

∂θ̂
0

Ã
TX
t=r

∂2 lnL

∂θ̂∂θ̂
0

!−1
(4)

where θ is the parameter vector and the expression is evaluated at the estimate θ̂.

Hypotheses of symmetric responses in the conditional mean (cf. Brännäs and De

Gooijer, 1994), the conditional variance, or in both jointly may be formulated as linear

restrictions on the θ vector, i.e. as Rθ = 0. Likelihood ratio tests are easy to apply in

practice. Given the estimates and the covariance matrix estimator Wald testing is also

quite straightforward.

For practical estimation the RATS 6.0 package is employed, using robust covariance

matrices throughout.

3. Data

The data used in this paper are capitalization weighted daily stock price indices of the Es-

tonian (Tallinn, TALSE), Latvian (Riga, RIGSE), Lithuanian (Vilnius, VILSE), Russian

(Moscow, RTS) and the United States (NYSE Composite) stock markets. All indices are

collected from web sites; WWW.OMXGROUP.COM provides the complete description

of the Baltic stock market indices, while WWW.RTS.RU and WWW.NYSE.COM give

the remaining indices. All prices are in local currencies, except for Estonia where stock

market trading is in Euro. The dataset covers January 3, 2000 to April 29, 2005, for a

total of T = 1391 observations, cf. Figure 1 for all indices. It is quite obvious that growth
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Figure 1: Indices of the Baltic stock exchanges, Moscow and New York (January 3, 2000

= 100).

rates are high but for New York and that the variance of Moscow is much higher than

for other series. The irregularity after the 400th observation in the Riga index (RIGSE)

is due to a power struggle in its largest company (Latvijas Gaze) in the summer of 2001.

Instead of elaborating on modelling to contain this irregular period, the Riga series starts

at September 17, 2001, and contains T = 945 daily observations.

Due to differences in holidays for the involved countries the series have different shares

of days for which index stock price are not observable. For Baltic stock market indices

the number of missed trading days on comparison with New York, which is used as a

standard, is 39 for TALSE, 49 for RIGSE, and 46 for VILSE for the entire sample. Linear

interpolation was used to fill the gaps for all series. The resulting series are then throughout

for a common trading week.

All returns are calculated as yt = 100 · ln(It/It−1), where It is the daily price index.
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Table 1: Descriptive statistics for daily return series.

Exchange Mean Variance Min/Max Skewness Kurtosis LB10 T

Riga 0.10 1.57 -9.72/9.46 -0.04 15.46 57.74 945

Tallinn 0.11 1.13 -5.87/7.34 0.20 5.68 47.80 1391

Vilnius 0.09 0.76 -10.22/4.58 -0.94 16.61 60.80 1391

Moscow 0.10 4.70 -11.57/9.62 -0.42 2.78 21.28 1391

New York 0.00 1.08 -5.27/5.18 0.08 2.29 14.23 1391

Note: LB10 is the Ljung-Box statistic evaluated at 10 lags.

Table 2: Cross-correlations for Baltic return series vs Moscow and New York.

Lag/Lead

Exchange -4 -3 -2 -1 0 1 2 3 4

vs Moscow

Riga 0.007 .0007 0.020 0.005 -0.041 0.041 0.012 -0.002 0.003

Tallinn 0.061 0.062 0.055 0.051 0.165 -0.048 -0.038 -0.043 0.008

Vilnius 0.081 0.078 0.059 0.079 0.076 -0.028 -0.043 0.032 0.013

vs New York

Riga 0.010 -0.005 0.077 -0.010 -0.001 0.005 -0.006 -0.031 0.036

Tallinn 0.027 0.039 0.033 0.260 0.076 -0.040 -0.026 -0.004 0.025

Vilnius 0.081 0.078 0.059 0.079 0.076 -0.028 -0.043 0.032 0.013

Table 1 reports descriptive statistics for the daily returns. With the exception of New

York, the Ljung-Box statistic for 10 lags (LB10) indicates significant serial correlation. The

large kurtoses for Riga and Vilnius indicate leptokurtic densities. The returns of Moscow

and/or New York serve as the xt variables in (2). For the zt of the conditional variance

function in (3) we construct two new series for Moscow and New York, by obtaining moving

variances for a window length of 10 observations. For Moscow the sample mean is 4.65

with a variance of 28.83, while for New York the sample moments are much lower; 1.09

and 1.57. The zt series entering the conditional variance function are demeaned moving

variance series; the threshold is then set at zero. The z+ then takes on positive values

and is indicative of high risk, and z− in a corresponding way takes on negative values and
indicates lower risk in Moscow and/or New York.

Table 2 gives cross-correlation functions for the return series vs Moscow and New

York. There are several interesting features to note. First, Riga appears autonomous with

no significant influence of neither Moscow nor New York. Second, Vilnius is throughout

positively influenced by both Moscow and New York. Third, for Tallinn there is a strong

positive impact of lagged Moscow returns within the same day, while with respect to
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New York yesterdays returns have the strongest impact followed by the current day. This

mirrors the synchronization difficulty we face due to differences in time zones. Therefore,

in model estimations New York is throughout incorporated with, at least, one lag to

account for the time difference between the Baltic states and the US. Finally and not

surprisingly given their sizes, the Baltic stock exchanges appear to exert no significant

impact on neither the Moscow nor the New York stock returns.

4. Results

The final estimation results are presented in Table 3, and were obtained by the stepwise

procedure outlined in Section 2.1. Tables A1-A6 of the Appendix give estimation results

for the preceding steps of the specification procedure. We start by discussing the results

for Tallinn in some detail and later progress to briefer accounts for the Riga and Vilnius

exchanges.

The estimation results for AIC minimizing pure ARasMA models are reported in Table

A1 of the Appendix. Focusing on Tallinn, all parameters of the pure ARasMA model are

significantly different from zero. In this model a Wald test rejects the hypothesis of

symmetric response to shocks at the included lags (p < 0.001) and the LB10 statistic

indicates that the standardized residuals, û/ĥ, are uncorrelated up to 10 lags, whereas the

squared standardized residuals show significant serial correlation (LB210 = 12.98, p = 0.22).

The pure ARasMA model is rejected in favour of the ARasMA-asQGARCH specifica-

tion of Table A2 (LR = 145.4). In the extended model neither standardized nor squared

standardized residuals show any significant serial correlation. A characteristic feature of

the fitted ARasMA-asQGARCH model in Table A2, columns 3—4, is that a negative shock

at lag one has a rather large risk-enhancing effect on conditional heteroskedasticity. The

squared shock at lag two has a small negative parameter estimate. The asymmetric effect

due to a shock in the conditional heteroskedasticity specification is longlasting since esti-

mates of ht−1 are about 0.9. In the conditional mean function the AR parameter prolongs
the effects of shocks somewhat.

In the next step, we separately add lags of Moscow and New York returns series to the

conditional mean (ARasMA) function. Tables A3-A4 give the estimation results for such

extended model specifications. We allow for asymmetric response to good and bad news

in the Moscow or New York series. For the conditional mean of Tallinn, Moscow explains

around 4 percent of returns, while news from New York seem to explain about 8 percent.

Tables A5-A6 report estimation results for models with either Moscow or New York

lags in both the conditional mean and variance functions. The LR test statistics reject

restricted models (cf. Tables A3-A4) against extended models for Tallinn. A characteristic

feature of these model, is that positive shocks (i.e. high risk) from New York and Moscow

seem to have a larger effect on volatility in Tallinn, than the insignificant negative ones

(lower risks).
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Table 3: Parameter estimates for the joint conditional return and risk functions of

ARasMA-asQGARCH models with both Moscow and New York in the functions (robust

standard errors in parentheses).

Riga Tallinn Vilnius

Variable Return Risk Return Risk Return Risk

yt−1 0.123 (0.080)

yt−2 0.106 (0.026)

u+t−1 -0.157 (0.062) 0.139 (0.089) 0.169 (0.106) 0.310 (0.052) -0.239 (0.118)

u+t−2 0.087 (0.113) 0.431 (0.100)

u+t−3 -0.075 (0.030)

u−t−1 -0.026 (0.074) 0.153 (0.116) -0.058 (0.090) -0.468 (0.107) 0.261 (0.127)

u−t−2 -0.042 (0.098) 0.236 (0.111) -0.385 (0.103)

u−t−3 0.040 (0.048)

u−t−4 0.090 (0.038)

u2t−1 0.512 (0.065) 0.046 (0.051) 0.295 (0.079)

u2t−2 -0.202 (0.068) -0.087 (0.048) -0.203 (0.067)

ht−1 0.630 (0.048) 0.914 (0.014) 0.673 (0.049)

x, z+M,t -0.027 (0.031) 0.014 (0.019) -0.009 (0.018)

x, z+M,t−1 -0.027 (0.031) 0.000 (0.019) -0.014 (0.007) 0.025 (0.018) -0.017 (0.013)

x, z+M,t−2 -0.017 (0.018) 0.013 (0.007) -0.006 (0.018) 0.091 (0.023)

x, z+M,t−3 0.040 (0.021) -0.117 (0.021)

x, z+M,t−4 0.048 (0.014)

x, z−M,t 0.053 (0.030) 0.076 (0.017) 0.048 (0.016)

x, z−M,t−1 -0.010 (0.034) 0.036 (0.009) -0.028 (0.021) 0.017 (0.017) 0.002 (0.023)

x, z−M,t−2 0.059 (0.019) 0.023 (0.019) 0.007 (0.024)

x, z−M,t−3 0.023 (0.017)

x, z+NY,t−1 -0.025 (0.050) 0.015 (0.011) 0.202 (0.043) 0.186 (0.044) 0.056 (0.032)

x, z+NY,t−2 -0.023 (0.031)

x, z+NY,t−3 -0.453 (0.121) -0.005 (0.072)

x, z+NY,t−4 0.269 (0.083) 0.021 (0.043)

x, z−NY,t−1 0.015 (0.048) -0.060 (0.022) 0.220 (0.037) 0.071 (0.037) 0.017 (0.093)

x, z−NY,t−3 0.049 (0.233)

x, z−NY,t−4 -0.110 (0.167)

Constant 0.235 (0.059) 0.218 (0.046) 0.149 (0.053) -0.040 (0.007) 0.071 (0.050) 0.069 (0.030)

σ̂2, AIC 0.975 0.89 0.994 0.91 0.712 0.52

lnL -402.15 -598.95 -328.23

LB10, LB
2
10 11.17 11.17 6.87 0.83 7.82 1.91

Skew, Kurt 0.62 4.43 0.71 6.88 -0.35 6.17

Note: LB10 and LB
2
10 is the Ljung-Box statistic for standardized residuals and their squares at lag 10.
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Table 3 reports estimation results for models with Moscow and New York incorporated

jointly. Rather than including all lags of Moscow and New York numerical reasons forced us

to adopt a leaner approach; the asQGARCH only contains those lags that were significantly

different from zero in Tables A5-A6. The results suggest that only positive shocks from

New York and Moscow have impact on volatility in Tallinn. Positive shocks from New

York influence the volatility of Tallinn series more than shocks from Moscow. For the

conditional returns of Tallinn, good news from New York have positive impact on returns

in Tallinn. Bad news from Moscow at the same day and two days ago, as well as bad news

from New York at one lag have negative impact on returns in Tallinn, through positive

parameter values. Bad news from New York seem to have stronger impact on returns in

Tallinn. There is no impact of good news on returns.

For Riga we find that there is no impact of neither good nor bad news from New York

nor from Moscow on returns in Riga. For the conditional risk function, negative shocks

(i.e. low risk) from Moscow reduce the volatility in Riga. High risk shocks from Moscow

are not included in this final model specification. However, the results remain unaltered

if insignificant lags of Moscow (as in Table A4) are included. Positive shocks from New

York no longer have any impact on volatility in Riga, when both Moscow and New York

are incorporated jointly in the conditional variance function. Negative shocks from New

York have risk-enhancing effect through negative parameter value.

The final columns of Table 3 report the estimates of the full model for Vilnius. News

arriving from New York and Moscow explain a modest 1.6 and 0.7 percent of returns

dynamics for Vilnius, respectively. Good news from Moscow seem to have no effect on

returns in Vilnius. The market reaction to bad news from Moscow is quite fast. Bad

news from Moscow (i.e. negative returns) within the same day have negative impact on

returns in Vilnius. For volatility spillovers, positive shock (i.e. high risk) from Moscow

are the only ones to affect volatility in Vilnius. The volatility persistence is quite low for

the final model specifications for Riga and Vilnius in Table 3.

In Figures 2-3 the conditional mean and variance responses to unit positive and

negative shocks in Moscow and New York are plotted. It is obvious that shocks arising in

New York have larger effects than those of Moscow on the returns of Tallinn and Vilnius.

The duration of effects is longer for Moscow. Positive shocks (i.e. higher risk) from New

York seem to have quite large risk enhancing effect in Tallinn, whereas positive shocks

from Moscow have the strongest effect in Vilnius. Shocks from abroad seem to have quite

little effect on returns and risks in Riga. Note, however, that variances of both return and

risk are much larger for Moscow. Even though, say, one standard error sized shocks are

employed, the results of Figures 2-3 remain qualitatively unchanged.

We use the Wald test statistic to test the hypothesis of no asymmetry in the final

specifications of ARasMA-asQGARCH models. Test results are presented in Table 4.

The null hypothesis of symmetric responses to own past shocks in conditional mean and

variance can be rejected for the stock markets of Tallinn and Vilnius, in all three models.
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Figure 2: The effect of positive and negative shocks (at date = 100) in Moscow and New

York in the conditional return functions of the Riga, Tallinn and Vilnius modela. Effects

are shifted to zero before the change date and ut = 0 for all t (solid line with marker for

positive shocks in Moscow, without marker in New York, and analogously for negative

shocks and dashed lines).
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Figure 3: The effect of high and low risk shocks (at date = 100) in Moscow and New York

in the conditional volatility functions of the Riga, Tallinn and Vilnius models. Effects

are shifted to zero before the change date and ut = 0 for all t (solid line with marker for

positive shocks in Moscow, without marker in New York, and analogously for negative

shocks and dashed lines).
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Table 4: Summary of asymmetry tests (M for Moscow and NY for New York).

Table A5 Table A6 Table 3

Stock Return Risk Return Risk Returns Risk

Market u M u M u NY u NY u NY M u NY M

Riga — — * * — — — * — — — — * *

Tallinn * — * — * — * * * — * * * *

Vilnius * — * * * * * * * — — * — *

Note: * indicates significance at the 5 percent level.

For the models that incorporate New York separately (Table A6), the null hypothesis of

symmetric responses to shocks from New York in conditional variance can also be rejected.

Wald tests rejected the hypothesis of symmetric impact of good and bad news fromMoscow

on returns for Tallinn, for the model presented in Table A5.

The final columns in Table 3 present the results for models that incorporates Moscow

and New York jointly. The Wald test statistics suggests that there are asymmetries in

responses to own past shocks in conditional mean and variance functions, except for the

Riga series. The conditional first moments of Vilnius and Tallinn stock indices respond

asymmetrically to news from Moscow, whereas there is no evidence for asymmetric re-

sponse to good and bad news from New York for any of the three Baltic stock markets.

For the conditional second moments, the Wald test indicates no asymmetric impact of

news from New York on volatility in Vilnius and Tallinn. According to our test results

for the final model, news from Moscow have asymmetric impact on volatility in all three

countries under study.

5. Discussion

This study uses an extended ARasMA-asQGARCH model to examine information trans-

mission from Moscow (RTS) and New York (NYSE) to three Baltic states stock markets,

comprising Lithuania (Vilnius), Latvia (Riga) and Estonia (Tallinn). The hypothesis of

asymmetric adjustment to own past information and information from abroad is tested.

Our empirical results from examining the data for the period of 2000 to 2005 indicate the

following.

First, for Tallinn there is a clear asymmetry in response to own past shocks for the

conditional variance, where bad news generate larger volatility. This behavior is consistent

with a partial adjustment price model where bad news are incorporated faster into current

market prices than good news. One possible explanation for this is that the cost of failing

to adjust prices downwards is higher. This result is also compatible with Black’s (1976)

leverage hypothesis. For Vilnius, we find that positive shocks generate more volatility. A

possible explanation for this behavior is the liquidity hypothesis of Rockinger and Urga
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(1999). They suggest that in illiquid markets all news generate more liquidity and investors

take advantage to dump their positions once greater liquidity has been achieved. Another

explanation for the stronger impact of positive shocks is the possibility that, given the

short time series, markets have been anticipating mostly positive shocks.

Second, in agreement with other studies (e.g., Koutmos, 1998, Wecker, 1981), the

conditional mean response to own past innovations is also asymmetric, with the exception

of Riga.

Earlier studies have found that the US is the major source of internationally transmit-

ted information (e.g., Liu and Pan, 1997; Eun and Shim, 1989; Koch and Koch, 1991).

In the case of Baltic state stock markets we find that news arriving from New York have

stronger impacts on returns in Tallinn and Vilnius, whereas Moscow has a stronger impact

on the returns of Riga. We find no evidence of asymmetric impact of good and bad news

from New York on returns in Baltic states. The returns spillovers from the US to the stock

markets in transition is consistent with the result of Tse et al. (2003), who find significant

spillover in the conditional mean return from the US market to the Polish market. A

reason for this, they argue, may be due to nonsynchronous trading problem. However, the

impact of news from Moscow on returns is asymmetric in Tallinn and Vilnius. In addition,

the results indicate that bad news from abroad have stronger impact on returns.

According to our results the impact of low versus high risk in Moscow on volatility in

Baltic states is asymmetric. The same pattern can be seen in the responses of the risk

from New York for Riga. We find, among other things that there is no volatility spillovers

from New York to the stock market in Vilnius. Similar results are found by Tse et al.

(2003) for the case of the New York and Warsaw Stock Exchanges. It can be seen that

high risk shocks from New York have a stronger effect on volatility in Tallinn, whereas

high risk shocks from Moscow have stronger effect on volatility in Vilnius. The overall

findings suggest that there are substantial differences among Baltic stock markets, with

respect to market adjustment to information arriving from abroad. This supports the

findings of Pajuste et al. (2000) that despite common characteristics, Central and Eastern

European emerging markets display differences in sensitivity to the risk factors that are

affecting the return generating process. This behavior may be caused by, for example,

industry composition, ownership and trade structure.
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Appendix

Table A1: Parameter estimates for the conditional return (ARasMA) models (robust
standard errors in parentheses).

Variable Riga Tallinn Vilnius
yt−1 0.512 (0.112)
yt−2 0.107 (0.019)
u+t−1 -0.100 (0.021) -0.286 (0.122) 0.259 (0.031)

u+t−3 -0.126 (0.046)

u−t−1 -0.137 (0.019) -0.454 (0.119)

u−t−3 0.079 (0.035)

u−t−4 0.100 (0.039)
Constant 0.095 (0.049) 0.069 (0.034) 0.023 (0.032)

σ̂2, AIC 0.976 1.37 1.083 1.09 0.728 0.69
lnL -642.91 -749.80 -474.67
LB10, LB

2
10 45.54 323.69 4.42 12.98 8.71 15.97

Skew, Kurt 0.13 16.09 0.25 5.79 -1.04 17.22
Note: LB10 and LB

2
10 is the Ljung-Box statistic for

standardized residuals and their squares at lag 10.
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Table A2: Parameter estimates for the conditional return and risk functions of ARasMA-
asQGARCH models (robust standard errors in parentheses).

Riga Tallinn Vilnius
Variable Return Risk Return Risk Return Risk
yt−1 0.306 (0.124)
yt−2 0.140 (0.023)
u+t−1 0.123 (0.054) -0.062 (0.133) -0.016 (0.123) 0.321 (0.039) -0.744 (0.148)

u+t−2 0.226 (0.116) 0.771 (0.138)

u+t−3 -0.066 (0.044)

u−t−1 -0.041 (0.066) 0.289 (0.101) -0.194 (0.134) -0.322 (0.122) 0.787 (0.152)

u−t−2 -0.190 (0.088) 0.098 (0.122) -0.827 (0.142)

u−t−3 0.042 (0.044)

u−t−4 0.103 (0.043)

u2t−1 0.641 (0.061) 0.097 (0.070) 0.616 (0.114)
u2t−2 -0.320 (0.066) -0.125 (0.064) -0.580 (0.104)
ht−1 0.678 (0.041) 0.901 (0.015) 0.931 (0.012)
Constant 0.147 (0.032) 0.117 (0.019) 0.084 (0.036) -0.019 (0.007) -0.041 (0.024) 0.009 (0.008)

σ̂2, AIC 1.008 0.902 1.086 0.999 0.729 0.601
lnL -414.37 -677.09 -404.18
LB10, LB

2
10 14.72 7.30 7.28 0.87 11.63 2.90

Skew, Kurt 0.57 4.73 0.67 7.23 -1.16 18.66
Note: LB10 and LB

2
10 is the Ljung-Box statistic for standardized residuals and their squares at lag 10.
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Table A3: Parameter estimates for the conditional return and risk functions of ARasMA-
asQGARCH models with Moscow in conditional return function (robust standard errors
in parentheses).

Riga Tallinn Vilnius
Variable Return Risk Return Risk Return Risk
yt−1 0.212 (0.110)
yt−2 0.111 (0.024)
u+t−1 -0.124 (0.055) 0.008 (0.122) 0.172 (0.122) 0.319 (0.049) -0.698 (0.130)

u+t−2 0.058 (0.128) 0.843 (0.101)

u+t−3 -0.093 (0.035)

u−t−1 -0.045 (0.068) 0.276 (0.108) -0.077 (0.119) -0.542 (0.119) 0.628 (0.142)

u−t−2 -0.185 (0.093) 0.323 (0.124) -0.575 (0.108)
u−t−3 0.075 (0.041)

u−t−4 0.103 (0.042)

u2t−1 0.637 (0.065) 0.038 (0.056) 0.557 (0.103)
u2t−2 -0.320 (0.069) -0.074 (0.053) -0.259 (0.084)
ht−1 0.679 (0.042) 0.905 (0.018) 0.456 (0.052)
x+t -0.024 (0.026) 0.063 (0.021) 0.002 (0.015)
x+t−1 -0.019 (0.028) 0.031 (0.022) 0.019 (0.015)

x+t−2 -0.033 (0.022) -0.026 (0.014)

x+t−3 0.025 (0.023)

x−t 0.059 (0.025) 0.086 (0.017) 0.095 (0.013)
x−t−1 -0.010 (0.029) -0.013 (0.024) 0.042 (0.010)

x−t−2 0.077 (0.021) 0.026 (0.016)

x−t−3 0.025 (0.021)
Constant 0.205 (0.051) 0.115 (0.019) 0.171 (0.045) -0.025 (0.007) 0.136 (0.038) 0.181 (0.041)

σ̂2, AIC 0.98 0.90 1.04 0.97 0.72 0.54
lnL -410.69 -647.99 -361.53
LB10, LB

2
10 11.03 9.64 6.13 1.00 6.26 2.34

Skew, Kurt 0.55 4.74 0.69 6.92 -0.57 7.98
Note: LB10 and LB

2
10 is the Ljung-Box statistic for standardized residuals and their squares at lag 10.
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Table A4: Parameter estimates for the conditional return and risk functions of ARasMA-
asQGARCH models with New York in conditional return function (robust standard errors
in parentheses).

Riga Tallinn Vilnius
Variable Return Risk Return Risk Return Risk
yt−1 0.144 (0.078)
yt−2 0.105 (0.023)
u+t−1 -0.119 (0.058) 0.125 (0.087) 0.087 (0.130) 0.261 (0.040) -0.816 (0.143)

u+t−2 0.165 (0.124) 0.844 (0.129)

u+t−3 -0.055 (0.038)

u−t−1 -0.044 (0.067) 0.300 (0.104) -0.077 (0.088) -0.482 (0.123) 0.898 (0.141)

u−t−2 -0.200 (0.090) 0.245 (0.124) -0.922 (0.126)

u−t−3 0.033 (0.043)

u−t−4 0.088 (0.039)

u2t−1 0.649 (0.062) 0.064 (0.065) 0.691 (0.110)
u2t−2 -0.327 (0.066) -0.100 (0.060) -0.638 (0.098)
ht−1 0.680 (0.040) 0.902 (0.015) 0.912 (0.019)
x+t−1 -0.015 (0.046) 0.218 (0.040) 0.037 (0.029)

x−t−1 -0.006 (0.043) 0.247 (0.036) 0.144 (0.030)
Constant 0.149 (0.039) 0.116 (0.019) 0.076 (0.039) -0.034 (0.008) 0.033 (0.027) 0.018 (0.011)

σ̂2, AIC 0.981 0.91 1.022 0.94 0.718 0.58
lnL -414.24 -633.34 -385.27
LB10, LB

2
10 11.74 8.97 8.67 0.74 11.92 1.91

Skew, Kurt 0.52 4.91 0.67 7.85 -1.12 17.66
Note: LB10 and LB

2
10 is the Ljung-Box statistic for standardized residuals and their squares at lag 10.
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Table A5: Parameter estimates for the conditional return and risk functions of ARasMA-
asQGARCH models with Moscow in the functions (robust standard errors in parentheses).

Riga Tallinn Vilnius
Variable Return Risk Return Risk Return Risk
yt−1 0.405 (0.117)
yt−2 0.107 (0.026)
u+t−1 -0.153 (0.059) -0.150 (0.131) 0.074 (0.128) 0.315 (0.050) -0.401 (0.119)

u+t−2 0.105 (0.127) 0.587 (0.100)

u+t−3 -0.098 (0.041)

u−t−1 -0.027 (0.074) 0.186 (0.105) -0.344 (0.130) -0.400 (0.133) 0.356 (0.125)

u−t−2 -0.037 (0.094) 0.199 (0.131) -0.478 (0.102)

u−t−3 0.059 (0.046)

u−t−4 0.101 (0.040)

u2t−1 0.521 (0.064) 0.075 (0.069) 0.370 (0.087)
u2t−2 -0.185 (0.070) -0.108 (0.063) -0.251 (0.073)
ht−1 0.608 (0.050) 0.925 (0.016) 0.658 (0.045)
x, z+t -0.035 (0.030) 0.055 (0.022) 0.034 (0.018) -0.005 (0.017)
x, z+t−1 -0.026 (0.031) -0.006 (0.004) 0.014 (0.023) -0.080 (0.032) 0.024 (0.016) -0.033 (0.009)

x, z+t−2 -0.033 (0.021) 0.045 (0.016) -0.009 (0.017) 0.109 (0.017)

x, z+t−3 0.027 (0.022) -0.113 (0.015)

x, z+t−4 0.041 (0.010)

x, z−t 0.056 (0.029) 0.089 (0.018) 0.047 (0.052) 0.055 (0.015)
x, z−t−1 -0.010 (0.032) 0.040 (0.009) -0.025 (0.023) -0.046 (0.099) 0.029 (0.014) 0.069 (0.032)

x, z−t−2 0.054 (0.019) -0.005 (0.051) 0.018 (0.018) -0.137 (0.063)

x, z−t−3 0.017 (0.023) 0.094 (0.063)

x, z−t−4 -0.019 (0.036)
Constant 0.228 (0.054) 0.287 (0.048) 0.104 (0.042) -0.031 (0.009) 0.076 (0.043) 0.080 (0.028)

σ̂2, AIC 0.976 0.89 1.038 0.96 0.719 0.53
lnL -403.52 -637.25 -338.15
LB10, LB

2
10 11.20 11.10 4.69 1.64 8.85 2.04

Skew, Kurt 0.63 4.36 0.58 5.89 -0.40 6.20
Note: LB10 and LB

2
10 is the Ljung-Box statistic for standardized residuals and their squares at lag 10.
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Table A6: Parameter estimates for the conditional return and risk functions of ARasMA-
asQGARCH models with New York in the functions (robust standard errors in parenthe-
ses).

Riga Tallinn Vilnius
Variable Return Risk Return Risk Return Risk
yt−1 0.106 (0.044)
yt−2 0.109 (0.024)
u+t−1 -0.145 (0.059) 0.164 (0.083) 0.113 (0.129) 0.256 (0.041) -0.687 (0.135)

u+t−2 0.089 (0.124) 0.705 (0.117)

u+t−3 -0.049 (0.037)

u−t−1 -0.040 (0.069) 0.219 (0.110) -0.044 (0.089) -0.434 (0.127) 0.819 (0.135)

u−t−2 -0.162 (0.091) 0.228 (0.127) -0.848 (0.117)

u−t−3 0.013 (0.049)

u−t−4 0.098 (0.041)

u2t−1 0.640 (0.063) 0.076 (0.069) 0.574 (0.100)
u2t−2 -0.338 (0.066) -0.109 (0.064) -0.502 (0.087)
ht−1 0.694 (0.039) 0.918 (0.016) 0.855 (0.028)
x, z+t−1 -0.015 (0.046) 0.020 (0.009) 0.206 (0.044) 0.269 (0.112) 0.035 (0.026) 0.083 (0.051)

x, z+t−2 -0.117 (0.238) -0.228 (0.094)

x, z+t−3 -0.427 (0.218) 0.235 (0.078)

x, z+t−4 0.287 (0.094) -0.097 (0.044)

x, z−t−1 -0.001 (0.042) -0.068 (0.020) 0.272 (0.035) -0.019 (0.339) 0.130 (0.030) 0.354 (0.152)

x, z−t−2 -0.221 (0.678) -0.221 (0.314)

x, z−t−3 0.220 (0.498) -0.771 (0.319)

x, z−t−4 -0.018 (0.205) 0.649 (0.158)
Constant 0.158 (0.040) 0.067 (0.020) 0.092 (0.044) -0.046 (0.008) 0.019 (0.029) 0.053 (0.018)

σ̂2, AIC 0.979 0.90 1.022 0.93 0.719 0.57
lnL -411.06 -617.69 -369.71
LB10, LB

2
10 11.46 9.23 9.20 1.11 11.58 1.43

Skew, Kurt 0.53 4.69 0.48 6.21 -0.92 14.31
Note: LB10 and LB

2
10 is the Ljung-Box statistic for standardized residuals and their squares at lag 10.
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