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Abstract

The empirically most relevant stylized facts when it comes to modeling time
varying financial volatility are the asymmetric response to return shocks and
the long memory property. Up till now, these have largely been modeled in
isolation though. To more flexibly capture asymmetry also with respect to
the memory structure we introduce a new model and apply it to stock market
index data. We find that, although the effect on volatility of negative return
shocks is higher than for positive ones, the latter are more persistent and
relatively quickly dominate negative ones.

Key Words: Financial econometrics, GARCH, news impact, nonlinear, risk pre-
diction, time series.

JEL Classification: C12, C51, C58, G10, G15.

*The financial support from the Jan Wallander and Tom Hedelius Foundation is gratefully
acknowledged.



1 Introduction

To this date, the ARCH and GARCH framework of Engle (1982) and Bollerslev
(1986) stands out as the single most important tool when it comes to understanding
and modeling the dynamics of financial volatility. Since the birth of the basic models
the literature has exploded with different extensions most often designed to cope
with the stylized facts of asymmetry and long memory (see Andersen, Bollerslev,
Christoffersen, and Diebold, 2006, and references therein for an overview).

The asymmetry property is most notable for equity returns and it refers to the
fact that return volatility tends to rise more following negative return shocks than
positive ones. This was first noted by Black (1976), who argued that negative re-
turn shocks increase financial leverage implying a riskier return on equity given an
unchanged stream of cash flows. Several alternatives for incorporating asymmet-
ric effects have been proposed in the literature. The most popular one appears to
be the asymmetric threshold GARCH (TGARCH) of Glosten, Jagannathan, and
Runkle (1993) and Zakoian (1994). Other commonly employed alternatives include
the Asymmetric GARCH (AGARCH) model of Engle and Ng (1993), the exponen-
tial GARCH (EGARCH) model of Nelson (1990) and the quadratic GARCH model
(QGARCH) of Sentana (1995). A more recent extension is the dynamic asym-
metric GARCH (DAGARCH) of Caporin and McAleer (2006) that generalizes the
TGARCH to include multiple and time-varying thresholds.

When it comes to the long memory property Nelson (1990), Ding and Granger
(1996) and Davidson (2004) provide insightful discussions. In particular, they note
that long memory may have quite different meanings. On the one hand, motivated
by the typical estimation results obtained for the basic GARCH model Engle and
Bollerslev (1986) proposed the integrated GARCH (IGARCH). In this model shocks

to the squared return process persists in the sense that they affect the prediction of,



respectively, the squared return process and future volatility for all time. Two other
and closely related ways (see Ding and Granger, 1996) of thinking about memory
is in terms of the autocorrelation function (acf) of squared returns and the rate of
decay of the coefficients in the infinite ARCH representations. The basic GARCH
implies exponentially decaying structures. In fact, as shown in Ding and Granger
(1996) this is also the case for the IGARCH model. However, empirical acf’s of
the squared returns are often found to die out at a slower (hyperbolic) rate (e.g.
Karanasos, Psaradakis, and Sola, 2004). To provide an intermediate case between
the conventional GARCH and the IGARCH Baillie, Bollerslev, and Mikkelsen (1996)
suggested replacing the first difference operator in the IGARCH model with the
fractional one to obtain the fractionally integrated GARCH (FIGARCH) model.
With the first interpretation of memory the FIGARCH model indeed serves as an
intermediate case. However, the model has also long memory in the sense that
the coefficients in the infinite ARCH representation die out hyperbolically. In fact,
Karanasos et al. (2004) derive autocorrelation functions for the related class of long
memory models in Robinson (1991) and argue that the FIGARCH model have the
same hyperbolically decaying second order structure. In this paper we view memory
in terms of the rate of decay of the coefficients in the infinite ARCH representation.

Now, a tempting next step is to combine the two features discussed above. In-
deed, volatility models in this direction have been proposed. For example, Bollerslev
and Mikkelsen (1996) proposed the fractionally integrated EGARCH (FIEGARCH)
(see also Ruiz and Veiga, 2008). Tse (1998) extends the asymmetric power ARCH
(APARCH) of (Ding, Granger, and Engle, 1993). Hwang (2001) proposes a quite
general class of asymmetric and fractionally integrated GARCH models (see also
Ruiz and Perez, 2003). More recently, Asai, McAleer, and Medeiros (2012) ex-
tended the FIEGARCH to capture asymmetric effects in a more flexible way. In

these papers asymmetry with respect to the effect of the most recent return shocks



on current volatility is captured. However, shocks are essentially treated symmetri-
cally with respect their effect over time on future volatilities since there is only one
fractional difference operator involved. The difference over time occurs merely with
respect to the asymmetry implied from the immediate response. Here, the focus
will be on the allowance for asymmetry in this conventional sense as well as with
respect to the memory property. In fact, in a related paper Lonnbark (2012) detects
the occurrence of the latter. However, the proposed model does not allow for long
memory. To achieve this we combine features of the TGARCH and the FIGARCH
models and propose a new model: The fractionally integrated threshold GARCH,
or the FITGARCH.

The remainder of the paper is organized as follows. Section 2 presents the index
data used in the empirical study. In Section 3 we introduce the model and discuss
some of its properties. Section 4 presents the estimator of the model parameters and
empirical results are given in Section 5. In particular, to illustrate the asymmetry
embedded in the model we extend the news impact curves of Engle and Ng (1993)

to surface versions. The final section concludes.

2 The Data

The data considered in this paper consists of index data for seven major stock
markets: CAC 40 (France), DAX (Germany), FTSE 100 (United Kingdom), Hang
Seng (Hong Kong), NIKKEI 225 (Japan), S&P 500 (United States) and Straits
Times (Singapore). Ten years of daily index data was downloaded from Yahoo
Finance covering the period May 16, 2001 to May 16, 2011. We calculate returns
as ry = 1001In(I;/1;_1), where I; is the value of the index at time point t. In Table
2 we provide some descriptive statistics for the return series.

All series exhibit skewness and leptokurticity. Indeed, the Jarque-Bera test



Table 1: Descriptive statistics for the return series. Vce, Skew and Kurt are the
sample variance, skewness and kurtosis respectively. JB is the p-value in the Jarque-
Bera test of normality. L Bjy and LB are p-values in the Ljung-Box test of autocor-
relation in returns and squared returns, respectively. The tests were computed using
ten lags. Asy. is the p-value of the t-statistic of r,_ymin(r;_1,0) in the regression of

r? on a constant, r2 ;.12 5 ....r2 o and 7,_ymin(r,_1,0).

Index Obs. Mean Vce Min Max Skew Kurt JB LBjg LB, Asy.
CAC40 2557 -0.012 2.450 -9.472 10.595 0.090 5.615 0.000 0.000 0.000 0.000
DAX 2547 0.007 2.652 -7.433 10.797 0.062 4.742 0.000 0.002 0.000 0.000

FTSE 100 2523 0.000 1.743 -9.265 9.384 -0.094 6.638 0.000 0.000 0.000 0.000
Hang Seng 2497 0.022 2.585 -13.582 13.407 0.018 9.328 0.000 0.026 0.000 0.000
NIKKEI 225 2450 -0.014 2.655 -12.111 13.235 -0.452 7.028 0.000 0.100 0.000 0.000
S&P 500 2513 0.002 1.825 -9.470 10.957 -0.152 8.819 0.000 0.000 0.000 0.000
Straits Times 2518 0.026 1.599 -9.216 7.531 -0.341 6.174 0.000 0.096 0.000 0.000

strongly rejects normality throughout. The Ljung-Box tests on the return series
suggest that autocorrelation is present in many cases. The Ljung-Box test on the
squared return series and the asymmetry check clearly signal that ARCH effects with
asymmetry are present in all indices. Noteworthy is also that the daily swings can
be quite substantial as manifested by the values on the min. and max. observations.

To further scrutinize on the properties of the autocorrelation structures we
computed autocorrelation functions for the squared return series as well as cross-
correlations between squared returns and lagged values on r, max(r;, 0) and 7 min(r, 0),
respectively. In Figure 1 we give the corresponding plots.

The plots in Figure 1 reveal that the correlations are considerable even at high
lags (cf. long memory). Noteworthy is also that the structure of the decay is quite

different for positive and negative shocks.
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Figure 1: Empirical correlations. AC is the autocorrelation function of r? and PC
and NC are the cross correlations between the r? and lagged values of 7, max(r¢, 0)
and r; min(ry, 0), respectively.



3 Fractionally integrated threshold GARCH

To evoke our volatility model we define a return shock process {u;} that started in

the infinite past and that is generated in discrete time by

Uy = \/h_t5t7

where {e;} ~ 7id(0,1). We define the time series process of index returns as r; =
i, + u, and with F; denoting the history up to and including time ¢ we have the
conditional mean p, = E(r;|F;_1) and variance h; = V(ui|Fi—1) = V(rdFiz1),
respectively. To allow for asymmetric effects in the specification of h; we define the
two time series processes u?" = wu, max(0,u;) and u?~ = w, min(0,1,). We focus
attention to a class of volatility models that may be represented as (cf. Davidson,

2004)
he = w + N (L)uf™ + A7 (L)uy ™, (1)

where L is the lag operator, i.e. Lx; = 241, and \*(L) = NJL+ X ;L% +..., s = +, —.

For the variance to be positive at all times we require that A, \; > 0 for all i.

Now, consider the GARCH(p, ¢) model
hy = w4+ a(L)u? + B(L)h, (2)

where a(L) = aiL + ... + agL? and 3(L) = B,L + ... + 3,L9. For stationarity
we require that a(1)+ (1) < 1 and to guarantee a positive variance at all times
it is typically assumed that w > 0 and that all the o's and (3's are larger than
zero. Indeed, this condition is sufficient although positivity may be ensured with

less restrictive assumptions as showed in Nelson and Cao (1992) and Tsai and Chan



(2008). Rewriting (2) in the form of (1) gives

he =[1 = B(L)] " w + [1 = B(L)] " a(L)]uy.

In this case AT(L) = A (L) and the rate of decay is exponential. Upon defining the
prediction error v; = u? — hy the model (2) may be written as an ARMA process for
uf

[1—a(L) = B(L)Juf = w + [1 = B(L)]vr. (3)

The IGARCH model of Engle and Bollerslev (1986) arises when the [1—a(L)—5(L)]
polynomial in eq. (3) contains a unit root, i.e. [1 — (L) — B(L)] = (1 — L)¢(L),
where ¢(L) =1 —¢L — ... — ¢,L? and has all the roots outside the unit circle. We

may then write

(1= Lyuf = [¢(L)]"'w + [¢(L)] 71 = B(L)]ue. (4)

The IGARCH model implies persistence in the sense that the effect of the fore-
cast errors, v, on the squared return shock process as well as on the prediction
of future conditional volatility persists. The effect on the actual volatility dies out
exponentially though, which is easily seen from the infinite ARCH representation of
(4)

he=[1=BL)'w+[1 =B = B(L) = (1= L)o(L)]ui.

For example, for the GARCH(1,1) and the IGARCH(1, 1) we have \; = a3" and
\; = B, respectively. Hence, in this sense the IGARCH is fundamentally different
from a random walk type of model.

To obtain an intermediate case between the GARCH and the IGARCH Baillie

et al. (1996) replaced the difference operator in (4) with the fractional one defined



as

(1= =1=3"" [[(k=d)/[[ (k+1)T (~d)]L*,

where I'(+) is the gamma function and 0 < d < 1, to obtain the FIGARCH(p, d, q)

model

(1= L) ¢(L)u; = w+ [1 = B(L)]vr. ()

From the infinite ARCH representation the specification is seen to imply a long

(hyperbolic) memory

he=[1 = B(L)]'w +[1 = [(1 = BL)] 7 (1 = L) $(L)]u?. (6)

With notation from eq. (1) we have A*(L) = A" (L) =1— (1 —8L)"'(1 — L)% This
polynomial consists of the multiplication of an exponentially decaying polynomial
and a hyperbolically decaying one. For large lags the latter will dominate and it is
possible to show that A\, ~ [(1 — 8)['(d)~!]k%1. In practical estimation the form
typically used is

hy = w+ B(L)hy +[1 = (1= L) ¢(L))u, (7)

The FIGARCH is not weakly stationary, but as shown in Zaffaroni (2004) the model
is strictly stationary and ergodic for the case of Gaussian innovations. Note that
the FIGARCH model reduces to, respectively, the GARCH model for d = 0 and to
the IGARCH for d = 1.

Turning now to the incorporation of asymmetric effects we depart from the

TGARCH(p, g%, ¢~ )-specification
he = w+ o (L)uf* + o™ (L)ui™ + B(L)hy, (8)

where a(L) = S.%, a$Li, s = +,— . This specification has the same exponential



memory structure as the GARCH and the difference between the effect on future
volatility of positive and negative return shocks occurs merely with respect to the
polynomials o™ (L) and o~ (L). To allow for more flexibility with respect to the
asymmetry in the memory structure we again use the prediction error, v;, and upon

noting that u? = u;" + u?~ eq. (8) may be written as
[1—a®(L) = BL)Jui "+ [1 —a™ (L) = B(L)]ui~ = w+ [1 = B(L)]uve.

Then, on using [1 — o*(L) — B(L)] = (1 — L)*¢*(L), where ¢°(L) = 1 — ¢]L" —
e = Qs L%, s = +, —, has all roots outside the unit circle we define the fractionally

integrated threshold GARCH model, or, the FITGARCH(p,d",q",d",q7), as

(1= D)™ " (Lyuf™ + (1= L) ¢~ (L)uy™ = w + [1 = B(L)]er, (9)

The infinite ARCH representation is given by

he = [1—BL) w+{l—1-L)" ¢ (L)} - AL)] u2t

1= (1= L) ¢~ (L)} = BL)] i (10)

In order for the variance to be positive at all times we require that A > 0, s = 4, —.
To guarantee this for the FIGARCH(1, d, 1) model Baillie et al. (1996) proposed the
necessary and sufficient conditions w > 0,0 < g < ¢p+dand 0 < d <1—2¢. The
direct extension to our model is w > 0,0 < S < ¢ +dF, 0 < d" <1—2¢" and
0<d"<1-2¢"and 0 < d" < 3 < ¢ +d . Adapting a result in (Karanasos,
Psaradakis, and Sola, 2004) the A-polynomials may for the (1,d",1,d™,1)-case be

shown to have the form

R & ) LoTi—k—d) . e
Ai = _F(—dS)F(i +1) B — D(—dT(i—k+1) (8% —¢8" ),




where s = +, —. When d~ = d* and ¢ (L) = ¢ (L) the model is simply the basic
FIGARCH. With d- = d* but ¢ (L) # ¢~ (L) the model becomes a long memory
version of the TGARCH, which is interesting in it’s on right and may serve as useful
alternative to the FIEGARCH model. We say that there is asymmetry with respect
to the memory when d~ # d*. In particular, when d* =0 (d”- =0) but 0 < d~ < 1
(0 < d* < 1) there is long memory only with respect to positive (negative) returns

shocks.

4 Estimation

To estimate the model parameters we employ the QML estimator. Thus, given a

normality assumption on {e;} the prediction error

rt — (Tt|-7:t 1 = Ut = \/ +E¢

is conditionally N(0, h;) and with observations up till time T, the log-likelihood

function takes the form

In L ——Zln (he) — Zuf/ht (11)

where s is determined by the number of lags in the mean and variance specifications.
The form of the volatility specification that appears most useful for the purpose of

estimation is

he =w—+ B(L)he + {1 — (1 = D) ¢t (L2t + {1 — (1 — L) ¢ (L) }u2.

For practical estimation we use the RATS 7.3 package employing robust standard

errors throughout. When it comes to computing the infinite lag polynomials (1 —

10



L)** and (1 — L)%~ we used the built-in frequency domain filtering procedure with
sample means as presample values. Maximization of (11) was carried out with the
BFGS algorithm. Each iteration in the maximization is initiated with moves of the
fractional difference parameters d+ and d— and the search for a maximum then
proceeds over the remaining parameters. The model is quite rich and for feasibility
we will have to be restrictive in terms of the number of lags to include in B(L),
¢ (L) and ¢ (L). For most practical purposes the (1,d",1,d~,1)-version appears
sufficient. Indeed it contains the special cases GARCH(1,1), TGARCH(1,1,1) and
FIGARCH(1,d, 1).

5 Empirical Results

We apply our modeling framework to the data presented in Section 2. To cope with
the autocorrelation in returns we follow the suggestion in Bollerslev and Mikkelsen
(1996) and consider a third order autoregressive specification for the mean function.

Thus, the estimated specification for all series is

Teo= g+ HaTe—1 + foTi—o + figTiog + U, U =\ By, €~ N(0,1),

he = wABh+{1-1-L)" Q—¢ L2 +{1—(1-L)*" (1—¢ L)}u>.

In Table 5 we give QML estimates along with some diagnostics checks.

The estimates of ¢, ¢, dtand d~ indicate the presence of asymmetric effects
in all series. Indeed, in the formal Wald testing of the joint hypothesis ¢* = ¢~ and
d™ = d~ we obtained highly significant rejections. Interestingly, the estimates of 3,
d™ and d~ are remarkably similar across the series. In particular, the parameter d*
that governs the long run response of volatility to positive return shocks is slightly

below 0.5 for all series, whereas d~, the parameter governing the long run effect of

11
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negative return shocks, is considerably higher. In fact, for none of the European
indices we could reject the hypothesis d— = 1.

In Figure 2 we plot the coefficients in the implied infinite ARCH representation of
the model, i.e. the A™’s and the A\~'s in eq. (1), and compare these to those implied
from the GARCH(1,1), the TGARCH(1,1,1) and the FIGARCH(1,d,1) models. Of
course, being symmetric these coincide for the GARCH and the FIGARCH models.
Most notably, according to the TGARCH positive return shocks are irrelevant for
the prediction of future volatility, which can hardly be said to be the case for our
model. The initial effects on volatility of a negative return shock is much larger then
that of a positive one of the same size. However, the latter is more persistent and
dominates already after approximately ten lags.

In Figure 3 we further illustrate the dynamic properties of the estimated model
for the S&P 50 with a news impact surface. Rather than just giving the response
of volatility to the most recent return shock as is the case for conventional news
impact curves, the surface version gives the responses to past shocks as well. For
the first lags the tilt towards negative shocks, i.e. the conventional asymmetry, is
clear. However, already after a few lags it becomes more symmetric and eventually

starts to tilt towards positive shocks.

6 Conclusion

To more flexibly capture asymmetry with respect to the memory in volatilities we
introduced a new model that takes features from the asymmetric TGARCH model
and the long memory FIGARCH model. In applying the model to stock market
index data we found that the initial effect on volatility of negative return shocks
are larger than that of positive shocks. However, the latter are more persistent and

dominate negative ones relatively quickly.
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An unfortunate feature of the model is that the effect on volatility of return
shocks actually increases for the very first lags. This feature is shared with other
models employing the fractional difference operator and we leave for future research

to explore alternative routes.
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