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Abstract

In the estimation of risk measures such as Value at Risk and Expected shortfall

relatively short estimation windows are typically used rendering the estimation error

a possibly non-negligible component. In this paper we build upon previous results

for the Value at Risk and discuss how the estimation error comes into play for

the Expected Shortfall. We identify two important aspects where it may be of

importance. On the one hand there is in the evaluation of predictors of the measure.

On the other there is in the interpretation and communication of it. We illustrate

magnitudes numerically and emphasize the practical importance of the latter aspect

in an empirical application with stock market index data.
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1 Introduction

The recent financial crisis has highlighted the need of properly understanding and mea-

suring financial risks and in particular of evaluating the means of doing so. When it comes

to measuring financial risk the Value-at-Risk ( ) has during the past two decades or

so emerged as the standard approach and it is today extensively employed by financial

institutions over the world. This popularity is at least partially due to the fact that reg-

ulators have adopted the measure as a base for capital adequacy calculations. This was

first stipulated in the 1996 Amendment to the first Basel Accord on banking supervision

and later further detailed and reinforced in the second Accord (see Basel Committee on

Banking Supervision, 2005, 2006). In the aftermath of the financial crises new regulations

have been developed to further strengthen capital requirement calculations (see Basel

Committee on Banking Supervision, 2012a). Consequently, the measure has been given

due attention in the literature (see Jorion, 2007, for an extensive overview).

The   gives a potential portfolio loss that will only be exceeded with some (small)

probability over a given horizon. As such it is conceptually simple. However, critique

has been directed at the   measure both from the academia and from the industry.

A complaint from the latter is that the   is silent about the size of the loss when

it exceeds the  . Furthermore, the   may fail to acknowledge so-called tail risk.

That is, two portfolios may have the same risk in terms of  , but their outcome in

case of   exceedence may be substantially different (e.g. Yamai and Yoshiba, 2005).

In an important paper Artzner, Delbaen, Eber, and Heath (1999) give a formal discussion

of what constitutes a good risk measure and establish some properties of coherence that

should be satisfied. In particular, a risk measure should acknowledge the principle of

diversification. However, it is possible to find perverse cases, where the   does not

satisfy this property. A measure that fares better in these respects is the Expected

Shortfall () that gives the expected loss given that the loss exceeds the  . As
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the name implies it says something about the size of the loss when disaster strikes, and

it also acknowledges tail risk in a better way than  . The measure also possesses

the desirable property of coherence. In fact, in a recent report the Basel Committee on

Banking Supervision suggests a move towards the  as the risk measure of choice for

capital adequacy calculations (see Basel Committee on Banking Supervision, 2012b).

In computing the   and the  a model for the joint movements of the risk

factors of the portfolio is typically postulated and the parameters of that model are

estimated based on a data-set containing past observations. Thus, uncertainty in the

predictors of   and  arises from two primary sources. First of all, the true data

generating process is not known, which gives rise to model risk. Secondly, the fact that

the parameters of the hypothesized model must be estimated gives rise to estimation risk.

Here, the focus is on the estimation risk. This source of error is often referred to as a

second order issue and neglected though. Consequently, it is relatively understudied. In

fact, Lan, Hu, and Johnson (2007) report that the research on the uncertainty of   only

amounts to about 25 percent of the   literature. In practise though, relatively short

estimation windows of one or two years are typically used rendering the estimation error

a non-negligible component. Indeed, the importance of estimation risk in this context

has previously been emphasized by Jorion (1996), Christoffersen and Gonçalves (2005)

and others. In fact, Lönnbark (2010) demonstrates that the estimation error in  

predictors may cause underestimation of portfolio risk in the sense that the probability

of exceeding the estimated   is higher than the chosen level. Thus, the estimation

error affects the interpretation of the  . In addition, when it comes to assessing the

adequacy of a   model the conventional way is to compare a time series of historical

  predictions to the corresponding portfolio returns. This procedure is commonly

referred to as backtesting (e.g. Christoffersen, 2003, Ch. 8). A good   model should

have a proportion of   exceedences (days when the loss exceeds the  ) close to the

chosen probability level. Consequently, as discussed in Escanciano and Olmo (2010) the

2



estimation error also affects the backtesting procedure and may bias the breach frequency.

Of obvious interest is what the picture looks like for the  measure, which is the focus

of this paper.

2 ES and VaR predictors

We assume that portfolio returns are generated in discrete time by

 = (θ10,−1) + (θ20,−1) (1)

where we take  to be a standard normally distributed random variable. The (·) and the
(·) are the conditional mean and standard deviation functions, respectively. The vectors
θ10 and θ20 contain true parameters and the set  contains the information available

at time . Typically, (·) is postulated indirectly in terms of the conditional variance
(cf. the workhorse GARCH(1,1) specification of Bollerslev (1986) that parameterizes the

conditional variance by 2 = 0+1
2
−1+2

2
−1). For a portfolio with returns generated

by (1) the one period ahead conditional  ,  
 , satisfies Pr−1( ≤ − 

 ) = ,

where the subscript  − 1 indicates that the probability is conditional on −1, and is in

this case given explicitely by

 
 = −(θ10,−1)− (θ20,−1)Φ

−1
  (2)

where Φ−1 is the inverse of the cdf of the standard normal distribution evaluated at .

The associated  is given by


 = −−1 ( |  ≤ − 

 )

= −(θ10,−1)− (θ20,−1)(Φ
−1
 ) (3)
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where (·) is the pdf of the standard normal distribution and where the subscript −1 on
the expectation operator indicates that it is conditional on −1. The   and the 

are conventionally reported as positive numbers. Hence, the minus signs in the definitions

above.

When it comes to the estimation of the parameter vector, θ0 = (θ010θ
0
20)

0, the

maximum likelihood estimator is commonly employed. It takes as the estimator the

parameter vector, θ = (θ01θ
0
2)
0, that maximizes the (conditional) likelihood function,

 =∝ −(12)P(ln2 + ( − )
22 ), where  = (θ1,−1) and  = (θ2,−1).

Given some regularity conditions the estimator vector, θ̂, is asymptotically normally dis-

tributed with the true parameter vector, θ0, as its mean and covariance matrix Σ =

− [ (2 ln (θ0) θθ0)]−1. Predictors of  
 and 

 are simply obtained by plug-

ging in the estimator vector, θ̂, in the expressions (2) and (3), respectively, to obtain

d 
 = −(θ̂1,−1)− (θ̂2,−1)Φ

−1
  (4)

and

d
 = −(θ̂1,−1)− (θ̂2,−1)(Φ

−1
 ). (5)

3 The role of the estimation error

When it comes to quantifying the uncertainty due to the estimation error in the   and

the  predictors we may rely on the asymptotic normality of the parameter estimator

(cf. Hansen, 2006, and others). Heuristically, asymptotic normality of d 
 and

d


follows from the asymptotic normality of θ̂

d 
 ∼ ( 

  
2
 ) (6)
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Return density

VaR density

-True VaR Return

Density

Figure 1: VaR and return densities. VaR density and return density refers to the condi-

tional densities of the   predictor and the return, respectively.

d
 ∼ (

  
2
 ) (7)

where the variances, 2 and 2 , may be obtained by employing the delta method. In the

sequel we maintain the assumption that d 
 and

d
 are normally distributed. A key

insight is that, in practice, we use a random predictor of the true   and when it comes

to interpreting and communicating the measure the relevant probability is Pr−1{ ≤
−d 

 }. Clearly, this probability does not necessarily equal  and may in fact equal
some ∗   implying an underestimation of portfolio risk. Indeed, statements such as

"the probability that the portfolio loss is less than the   is 100 % " may be quite

misleading. In Figure 1 we depict a situation with an unbiased   predictor.

For a   "draw" to the left of (minus) the true   the probability of exceedence

is smaller than . For a draw to the right the opposite is true. As the return density
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is positively sloped through the   density the latter will dominate. We note that if

the return density were flat through the   density there would be no effect on the

exceedence probability, i.e. ∗ = . Extrapolating on this reasoning we may conjecture

that the difference between ∗ and  is smaller for fat tailed return distributions.

Essentially, in the backtesting of a   predictor we compare draws from the  

distribution to draws from the return distribution. Thus, the discussion above have a

bearing on this procedure and for   the role of estimation error is essentially the same

for evaluation and interpretation. Here, the interest is in the role of the estimation error

for  predictors.

Now, the  gives the expected loss given   exceedence and for the purpose

of interpreting and communicating  figures it is of interest to compare the actual

expected loss, i.e. −−1(| ≤ − d 
 ), given exceedence of the (random)   to the

true expected shortfall, 
 . To this end it is straightforward to show that Pr−1( ≤

− d 
 ) = ∗ = Φ(Φ−1 

p
2 + 2 ) and in the Mathematical Appendix we show that

−1[1( ≤ − d 
 )] = ∗+(2)

p
 exp[2(4)− ], where  = (1+12)2,

 = −2 and  = 2(2), and where  = Φ−1 and  = . We have

−1(| ≤ − d 
 ) =

−1(1( ≤ d 
 )

Pr( ≤ d 
 )

=  +
(2)

p
 exp[2(4)− ]

∗
 (8)

In expression (8) both the denominator and the numerator in the final term are "biased"

upwards. The latter arise as an implication of Jensen’s inequality (the pdf of  is con-

vex in the tails). In Figure 2 we plot −−1(| ≤ − d 
 ), 


 and the difference

−−1(| ≤ − d 
 ) − 

 as functions of  and  for three different levels on the

return standard deviation:  = 1%, 2% and 5% (the conditional mean is set to zero).
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Figure 2: Effect on the interpretation. The top panel gives the levels of −−1(| ≤
− d 

 ) and 

 as a function of the return standard deviation (std) and the probability

level (alpha). The bottom panel gives the difference −−1(| ≤ − d 
 )−

 .

The−−1(| ≤ − d 
 ) is throughout smaller than


 . The underlying intuition

is quite clear cut and essentially the same as for the   case. For a   draw to the left

of (minus) the true   exceedences are "large", while they are "small" for   draws

to the right. Again, as the return density is positively sloped through the   density

the latter will dominate and −−1(| ≤ − d 
 ) is smaller than the true . Again

somewhat speculatively we expect smaller magnitudes for fat tailed return distributions.

Indeed, the difference decreases with the return variance. We also note that the difference

decreases with the probability level, whereas it increases with the estimation error (std in

the figure).

When it comes to the backtesting of an  predictor the direct corresponding way to

the   case is to compare the average portfolio return on days of   exceedence to the

corresponding average  prediction these days (for more sofisticated ways see Berkowitz,

2001; Kerkhof and Melenberg, 2004; Wong, 2008). Thus, of interest is how −1(| ≤d 
 ) compares to −1(d

 | ≤ d 
 ). The −1(| ≤ d 

 ) was given in eq.

(8) above and in the Mathematical Appendix we show that −1(d
 1( ≤ d 

 ) =
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Figure 3: Effect on the back-testing. The top panel gives the levels of −−1(| ≤
− d 

 ) and −1(d
 | ≤ − d 

 ) as a function of the return standard deviation (std)

and the probability level (alpha). The bottom panel gives the difference −−1(| ≤
− d 

 )−−1(d
 | ≤ − d 

 )


∗() − ∗ + (2

∗)
p
∗ exp[∗2(4∗) − ∗], where ∗ = (1 + 1∗2)2,

∗ = −∗2 and ∗ = ∗2(2∗), and where ∗ =  and ∗ = . Thus,

−1(d
 | ≤ d 

 ) =
−1(d

 1( ≤ d 
 )

Pr( ≤ d 
 )

= 
 +

(2
∗)
p
∗ exp[∗2(4∗)− ∗]

∗


In Figure 3 we plot −−1(| ≤ − d 
 ), −1(d

 | ≤ − d 
 ) and the difference

−−1(| ≤ − d 
 ) − −1(d

 | ≤ − d 
 ) as functions of  and  for three

different levels on the return standard deviation:  = 1%, 2% and 5% (the conditional

mean is again set to zero).

The −−1(| ≤ − d 
 ) is throughout larger than −1(d

 | ≤ − d 
 ). It is

interesting to see that the difference is of opposite sign as compared to the case above.

Due to the estimation error −1(d
 | ≤ − d 

 ) 6= 
 and since

d
 is simply

a constant times d 
 it will be "small" when

d 
 is and vice versa. Again, the
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Table 1: Descriptive statistics for the index return series. Vce, Skew and Kurt are the

sample variance, skewness and kurtosis, respectively. JB is the p-value in the Jarque-Bera

normality test. 10 and 102 are p-values in the Ljung-Box test for autocorrelation in

returns and squared returns, respectively. The Ljung-Box statistics were evaluated using

10 lags. Asy. is the p-value of the t-statistic for 1(−1  0)2−1 in the regression of 
2
 on

a constant, ten lags of 2 and −1(−1 0).

Index Obs. Mean Vce Min Max Skew Kurt JB LB10 LB
2
10 Asy.

CAC40 1278 -0.018 2.731 -9.472 10.595 0.168 9.719 0.000 0.000 0.000 0.000

DAX 1275 0.018 2.430 -7.433 10.797 0.167 10.406 0.000 0.007 0.000 0.000

FTSE 100 1261 0.001 2.193 -9.265 9.384 -0.080 9.764 0.000 0.000 0.000 0.000

Hang Seng 1261 0.028 3.852 -13.582 13.407 0.087 10.198 0.000 0.025 0.000 0.000

NIKKEI 225 1222 -0.042 3.392 -12.111 13.235 -0.528 11.000 0.000 0.172 0.000 0.000

S&P 500 1258 0.003 2.495 -9.470 10.957 -0.238 11.449 0.000 0.000 0.000 0.000

difference increases with the size of the estimation error and decreases with the return

variance. The effect of the probability level is the opposite though.

4 Empirical illustration

To get an idea of the economic relevance of our findings we compute  predictions along

with estimates of the difference −−1(| ≤ − d 
 )−

 for six major stock market

indices; CAC 40 (France), DAX (Germany), FTSE 100 (United Kingdom), Hang Seng

(Hong Kong), Nikkei 225 (Japan) and S&P 500 (United States). Five years of daily index

data was downloaded from Yahoo Finance covering the period May 16, 2006 to May 13,

2011. We calculate returns as  = 100 ln(−1), where  is the value of the index at

time point , and consider  = 001. In Table 1 we give some descriptive statistics for the

return series.

There is skewness and excess kurtosis in all return series. Consequently, the Jarque-

Bera test rejects unconditional normality throughout. The Ljung-Box test indicates serial

correlation in all series except Nikkei 225 and Straits Times, while ARCH effects with

possible asymmetry are present in all series. As a reasonable specification for all series

9



we take

 = 0 + 1−1 +   =   ∼ (0 1)

2 = 0 + 1
2
−1 + 2

2
−1 + 3−1min(−1 0) (9)

The asymmetric conditional variance specification is due to Glosten, Jagannathan, and

Runkle (1993) and gives negative return shocks an extra boost in the effect on future

conditional variances. To guarantee a positive variance at all times we require that 0 ≥ 0,
1 2 3  0. In the estimation of the model we employed maximum likelihood. Thus,

with observations up to time  the log likelihood function takes the form.

ln ∝ −1
2

X
=1

ln()− 1
2

X
=1

2 (10)

All estimations were carried out in the RATS 7.3 package using the built in BFGS algo-

rithm for the maximization of (10)1. We use robust standard errors throughout. To fulfill

parameter restrictions we occasionally considered re-parameterizations. In particular, we

set  = exp(
∗
 )  = 0 1 3 and 2 = 1[1+exp(

∗
2)]. The model (9) was estimated based

on rolling estimation windows of, respectively, 250 500 750 and 1000 observations for all

series. In Figures 4 and 5 we give the implied  predictions in percentage points along

with the estimated differences for the case of 500 observations. Details on how to compute

the variance of the predictors are provided in the Appendix.

There is a quite similar pattern among the series regarding the  predictions. All

exhibit a strong time variation and sharply rise during the financial crises. The magni-

tudes of the estimated differences roughly track those of the corresponding predictions.

Noteworthy is that they are quite substantial at times. In Table 2 we give some summariz-

1In the few cases the BFGS-algorithm did not converge we estimated the parameters in the mean

and variance specification seperately. For the former we considered least squares, while for the latter we

employed the simplex routine with ten iterations.
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Figure 4: Estimates of 
 (left panel) and the difference −−1(| ≤ − d 

 )−


in percentage units.
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in percentage units.
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Table 2: Descriptive statistics for estimated differences in percentage units. Vce is short

for variance.

 = 250  = 500

Index Obs. Mean Vce Min Max Obs. Mean Vce Min Max

CAC40 1029 -0.2460 0.0697 -3.2782 -0.0191 779 -0.1051 0.0222 -2.4388 -0.0137

DAX 1026 -0.2234 0.0408 -1.9495 -0.0144 776 -0.0965 0.0090 -0.9584 -0.0096

FTSE 100 1012 -0.2277 0.0494 -2.7240 -0.0201 762 -0.0808 0.0055 -0.8244 -0.0165

Hang Seng 1012 -0.3157 0.1093 -3.1564 -0.0207 762 -0.1218 0.0112 -0.9596 -0.0231

NIKKEI 225 973 -0.2785 0.0976 -2.8593 -0.0222 723 -0.1322 0.0242 -1.6185 -0.0246

S&P 500 1009 -0.2531 0.0904 -1.9646 -0.0148 759 -0.1019 0.0147 -0.8893 -0.0121

 = 750  = 1000

Index Obs. Mean Vce Min Max Obs. Mean Vce Min Max

CAC40 529 -0.0472 0.0016 -0.6022 -0.0109 279 -0.0348 0.0014 -0.4620 -0.0078

DAX 526 -0.0408 0.0006 -0.2203 -0.0078 276 -0.0244 0.0003 -0.1595 -0.0054

FTSE 100 512 -0.0328 0.0004 -0.2224 -0.0096 262 -0.0224 0.0002 -0.1574 -0.0077

Hang Seng 512 -0.0548 0.0011 -0.2394 -0.0150 262 -0.0272 0.0001 -0.0675 -0.0110

NIKKEI 225 473 -0.0549 0.0028 -0.3745 -0.0115 223 -0.0455 0.0036 -0.2914 -0.0086

S&P 500 509 -0.0380 0.0005 -0.2145 -0.0064 259 -0.0260 0.0003 -0.1608 -0.0068

ing descriptives for the estimated differences for all sample sizes and indeces. As expected

the sample size has a considerable impact on the size of the difference. In practice, the

two smaller sample sizes are the ones that would typically be used. In particular, for a

sample size of one year the differences are quite large even on average. As the sample size

increases the magnitudes becomes smaller.

5 Conclusion

We studied the role of the estimation error in predictors of the  and identified two

important aspects where it may be of importance. On the one hand there is in the way

the measure is interpreted and communicated and on the other there is in the way it is

evaluated, or backtested. Interestingly, we found that while the effect on these are the

same in the case of   they differ for . We found that the  predictor overestimates

that actual expected loss given   exceedence. In an empirical illustration we found

this to be practically important. To get an  prediction with the correct interpretation

one could simply add the estimated difference to the conventional  predictor. When

12



it comes to the backtesting of the measure we found that the average  predictions are

likely to be larger than the average returns on days of   exceedence. We leave for

future work to incorporate this result in backtesting procedures for  predictors. Of

course, the analysis carried out here hinges on the normality of portfolio returns. Based

on the underlying intuition we noted somewhat speculatively that the magnitudes are

likely to be smaller for more realistic fat tailed distributions, though.
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Mathematical Appendix

The actual expected shortfall

Let  = − d 
 . For notational convenience we drop the subscript on the expectations

operator. Thus, (·) should read expectation conditional on the information available in
− 1. With notations from the text and ∗ = Pr{ ≤ } we have

(1( ≤ ) = [( + )1( +  ≤ )]

= [(
 − 


)] + [(
 − 


)]

= ∗ + 

∞Z
−∞

1

2
exp(
−2
2
) exp[

−( −)2

22
]

= ∗ +


2

∞Z
−∞

exp[
−2 − ( −)2)

2
]

= ∗ +


2

∞Z
−∞

exp[−(1 + 1
2)

2
2 +



2
 − 2

2
]

= ∗ +


2

∞Z
−∞

exp[−2 −  − ]

= ∗ +


2

r



exp[2(4)− ]

where  = Φ−1 ,  = ,  = (1 + 12)2,  = −2 and  = 2(2). See

Gradshteyn and Ryzhik (1994) for the final step.

The expected ES predictor given VaR breach

Re-using the notation above we first have d
 = d 

 + ( + ()). Then,

−1(d
 | ≤ − d 

 ) = ∗( + ()) − −1(| ≤ ). Let  be a standard
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normally distributed variable. Then

(1( ≤ ) = [(− 
 − )1( ≤ )]

= ∗( +)− [1( ≤  + − )]

= ∗( +)− {[1( ≤  + − )]|}

= ∗( +)− {[1( ≤  + − 


)]|}

= ∗( +)− {[1( ≤ ∗ )]|∗ }

= ∗( +)− [(
∗
 )]

= ∗( +)− 

∞Z
−∞

1

2∗
exp(
−2
2
) exp[

−( −∗)2

2∗2
]

= ∗( +)− 

2∗

r


∗
exp[∗2(4∗)− ∗]

where ∗ = ( +  − ), 
∗ = , 

∗ = , 
∗ = (1 + 1∗2)2, ∗ =

−∗∗2 and ∗ = ∗2(2∗). We have −1(d
 | ≤ − d 

 ) = ∗(+ ()) −
∗(+)+(2

∗)
p
∗ exp[∗2(4∗)−∗] = 

∗()−∗+(2∗)
p
∗

exp[∗2(4∗)− ∗].

Computation of the variance of the VaR and ES predictors

The variance, 2 , of the   predictor may be obtained from the delta method as follows

(the corresponding variance of  is simply a constant times this variance). The  

predictor is given as in (5) with  = 0 + 1−1 and 2 = 0 + 1
2
−1 + 2

2
−1 +

3−1min(−1 0). Thus, with Σ denoting the covariance matrix of the parameter esti-

mator we have

2 =
 



θ0
Σ
 



θ


where  
 θ = −θ − Φ−1 θ. In the present case we have θ =

(1 −1 0 0 0 )0 and for θ we may conveniently use the decomposition θ = (θ
0
1θ

0
2)
0,
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where θ1 = (0 1)
0 and θ2 = (0 1 2 3)

0. We have θ = (2)
−1(2θ)

 = 1 2 with 2θ1 and 2θ2 respectively following the recursions

2
θ1

= −2−1(1 + 3−1min(−1 0)(1 −1)
0 + 2

2−1
θ1

2
θ2

= (1 2−1 
2
−1 −1min(−1 0))

0 + 2
2−1
θ2

.
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