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Abstract

In this paper we study the impact of market jumps on the time varying return cor-
relations between stock market indices in the Baltic countries. An EARJI-EGARCH
model facilitating direct modelling of the time varying return correlations is intro-
duced. The empirical results indicate that there is a quite large number of identified
jumps in the emerging Baltic stock markets. The main finding is that isolated market
jumps in one of the markets generally have no or small effects on the time-varying
correlations. In contrast, simultaneous jumps of equal sign increase the average cor-

relation, in some cases with as much as 100 percent.
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1 Introduction

Does international portfolio diversification give investors protection from extreme move-
ments (or jumps) in local stock market prices? An answer to this question obviously
depends on the correlation between returns in different markets included in the portfolio.

Empirical evidence concerning financial asset and market returns (e.g., Fustenberg
and Jeon, 1989; Koch and Koch, 1991; Erb et al., 1994) often points towards time-varying
correlation structures that tend to increase during unstable periods. Karolyi and Stulz
(1996), Ramchand and Susmel (1998) and Longin and Solnik (1995, 2001), among others,
found that the correlations between major stock markets rose during periods of high
volatility or during market crises. In general, the literature on contagion' (e.g., Claessens,
2001; Forbes and Rigobon, 2002) often finds that the cross-market correlation coefficients
in a stable environment are statistically different (lower) from the correlation coefficients
during unstable periods. Even though international stock market correlations have received
a lot of attention in the literature, due to its importance in portfolio and risk management
(e.g., Fazio, 2007; Knif and Pynnonen, 2007; Campbell et al., 2008), less is known about
correlation responses to large shocks (jumps) in stock market returns.

To shed some light on this issue, the current paper studies the impact of large dis-
crete changes in stock market prices (jumps) on time-varying return correlations. More
specifically, we study whether the correlations of stock market returns differ when there
are smooth changes in market returns or large discrete changes (jumps). The study is
performed on stock market data for the Baltic countries (Estonia, Latvia and Lithua-
nia) which have previously received little attention in the financial literature. Despite the
benefits of diversifying into emerging markets (see, Bekaert and Harvey, 2002), portfolio
managers often shy away from these markets due to the high volatility. Thus, improved
knowledge about emerging stock markets, in this case the Baltic stock markets, may reduce
the uncertainty about such an investment.

In the empirical analysis a bivariate Exponential Autoregressive Jump Intensity (EARJI)-
EGARCH model, based on Chan (2004), is introduced to identify stock market jumps as
well as to estimate time varying return correlations. The possible effect of the identified
stock market jumps on the time varying return correlations are then analyzed in separate
regressions.

This paper contributes to the existing literature in several ways. First, in contrast to

! Contagion is commonly defined as an increase in stock market co-movements after a shock or a financial

crisis.



the earlier literature on contagion, where shocks or periods of financial turmoil usually
are pre-defined by the authors, we utilize a data driven procedure to identify large shocks
labelled as jumps. Thus, the results of this paper are, in this regard, more general and
pertain to any market shocks rather than to prespecified shocks or to periods of financial
turmoil. Second, the effects of market jumps on the dynamics of time-varying return
correlations have not previously, to the authors knowledge, been addressed as directly
as in this paper. In the literature on jump spillovers, Asgharian and Bengtsson (2006)
found earlier that the correlation structure between the jump processes of returns differs
significantly from the correlation between the regular return components (i.e. the parts
that are not jumps). In comparison to Asgharian and Bengtsson (2006), we focus directly
on the question of how jumps affect the return correlations, whereas they are mainly
concerned with the correlation between jumps, as well as, spillovers of jumps between
international markets. Note that a high correlation between jumps does not necessarily
imply a high correlation between returns, since jumps may be in different directions, i.e.
correspond to large positive and negative changes in stock market prices. Third, in this
paper the class of mixed GARCH-jump models (e.g., Chan and Maheu, 2002) is extended
to a specification with a time varying return correlation. The earlier multivariate models
by e.g., Chan (2004), have instead implicitly modelled time varying return correlation
through correlated jump components. Fourth, empirical evidence on the Baltic stock
markets, which are less studied in the financial literature, is provided.

In Section 2 of the paper the econometric framework is outlined. Section 3 describes
the data set used in the empirical study. Section 4 reports on the empirical results, while

the final section discusses the results and concludes the paper.

2 A bivariate EARJI-EGARCH model with time-varying

correlation

2.1 Background

The model used in the empirical analysis belongs to the class of GARCH-Jump mixture
models originating from Press (1967), who introduced a jump model, where the arrival of
jumps is governed by a Poisson distribution.? The early version of the model assumed that

there is a constant number of large discrete price movements (jumps) within a fixed time

>The basic jump model by Press has been used in mainly financial applications by, e.g., Jorion (1988),

Vlaar and Palm (1993) and Nieuwland et al., (1994).



interval. The average number of jump events in a time interval is called the jump inten-
sity. Chan and Maheu (2002) extended the model to include time-varying (ARMA) jump
intensities, whereas Hellstrom et al., (2008) introduced an exponential version of the time-
varying jump intensity to account for asymmetric responses to jump innovations. Chan
(2003, 2004) considered bivariate extensions of the model with correlated jump dynam-
ics. However, their study, based on the multivariate GARCH parametrization (BEKK) is
limited to the analysis of the correlation between jump components only. In contrast to
the earlier studies, we focus directly on the correlation between market returns through
a reparameterization of the covariance matrix for the market returns (e.g., Tsay, 2002,
ch. 10). Thus, the covariances and correlations between market returns capture the co-
movements driven by both the innovations not associated with jumps and by the jump
innovations. This allows us to directly study the impact of market jumps on the return
correlation. To explore the effect of market jumps on the time-varying return correlations,
actual jumps are first identified and then in a second step used to explain the time-varying

correlation.

2.2 A bivariate EARJI-EGARCH model

To study the time-varying correlation between the stock market returns r1; and ro; a
bivariate model based on Chan (2004) is outlined. The bivariate model structure, opposed
to a trivariate structure, is chosen to simplify the identification of the time-varying second
order moments.> Given the information set at time ¢t — 1, ®3 1 = {ry_1,...,mi1} for

i =1,2,* the model is specified as:
Ri = py + €1 + €. (1)

Here Ry, p;, €1: and ey are 2x1 vectors denoting the returns, the conditional mean
functions specified as p; = ag; + ZlL:l ay;Tit—1, the random disturbances, and the jump
innovations, respectively.

The jump innovation component is defined as:

nit nit
S Viw By (z Y)
ex = | "o bt ; (2)
> Vo - B (Z th,l)
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3Since the model is already highly parameterized in its univariate form and is estimated by integrating

over the jump distribution, a trivariate structure would be numerically more complicated to estimate

compared to the bivariate structure.
*Throughout the rest of the paper ¢ = 1, 2.



where each of the jump size variables Yj; ; is assumed to be independent and normally
distributed with mean 6; and variance 6?. The jumps, ng;, in the market returns are
assumed to be generated independently of each other by an independent bivariate Poisson
distribution with time-varying jump intensity parameters \;;. The parameter \;; is the
expected conditional number of jumps, n; over the time interval (¢t —1,t), i.e. Ay =

E [n|®i—1]. The bivariate Poisson density is specified as:

exp(—A1)AF, exp(—Agr) N
Pr(nn, = k.nay = 1] @) = SPCAON D Q

To allow the jump intensities to vary over time, A;; is specified in an Exponential Autore-

gressive Jump Intensity (EARJI) form given by:

In(Ait) = v0; + 71 In(Nie—1) + v2:€5-1-

In this specification, the parameter v, measures the persistence and 7,; measures the pos-
sible asymmetric effect of shocks to the jump intensity (\;;). That is, a positive parameter
value for 7, indicates that a positive shock produces a larger impact on the conditional
jump intensity than a negative shock of an equal magnitude. The £,,_; represents the
innovation to A;—1, measured ex post. This measurable shock (intensity residual), which

is the unpredictable component affecting the jump intensity is given by:

[e.e]
i1 =B | @i1] = X1 =Y _nx Pr(ni—1=n|Pit—1) — Nie—1.
n=0

E[nj—1 | ®;—1] is the ex post assessment of the expected number of jumps that occurred
from t — 2 to t — 1, whereas, A;;—1 is the conditional ex ante expectation of n;_1, given
the information set ®;;_o, and Pr(n;—1 =n | ®;—1) is the ex post distribution of n;_1,
given the information at time ¢ — 1. Having observed r;; and using Bayes’ rule, the ex post

probability that n jumps occurred at time ¢ is given by:

f(rie | ng =1, Pi—1) Pr(ng =n| ®i—1)
[ (rie | Pir—1) ’

Here, f (1 | nie =1, ®j—1) is the marginal conditional density function for r;; given that

Pr(ng=mn|®4) = n=20,1,2,.. (4)

7 jumps occurred, Pr(ny; = n | ®;—1) is the marginal Poisson density function for n; =
7 implied by eq.(3), and f (ry | ®i—1) is the conditional density function for r;. The

conditional density function for r; is specified and discussed in Section 2.2.

2.3 Time-varying return correlation

Given that the random disturbances in €1; and the jump innovation components in €o

are contemporaneously independent of each other, i.e. E(e1;e25) = 0 for 4,5 = 1,2, the



covariance matrix of returns may be expressed as:
Var(rt|<I>,-t_1) = VaT(Elt‘(I)Z't_l) + Var(egt@it_l).

The disturbances in €1; are assumed to be normal i.i.d. mean-zero innovations with the
conditional covariance matrix:
2 €1
= 01t 012t
Ht = Var(51t|<1>it_1) =

€1 2
012t O2t

The disturbances are specified as €15+ = o;2¢, where z; ~ N(0,1), and o is assumed to
follow an EGARCH(1,1) process (Nelson, 1991). The process for the conditional variance

is specified as:

In(0%) = woi + wiithie—y +wai (0hy) +wsi (Wil = V2/7).

where v;; = €1¢/0s is the normalized residual. The o7}, is the covariance between €11,
and e19¢.

Conditional on k jumps in stock market index 1 and [ jumps in stock market index 2,
the jump innovations in €y (cf. eq. (2)) have a bivariate normal distribution with zero

mean and a covariance matrix given by:

2 £9
ko1 o3

H; = Var(ey|®y_1) = o 2
o5 103

The conditional variances for the jump components are given by ké% and l5% while the
covariance between e€91; and €99; is denoted with O'i%t. Note that U%t is thought to capture
the possible covariance between either the jump sizes (6;) or jump intensities (\;), or
both. In contrast, Chan (2004) lets n;, the frequency of jumps between ¢t — 1 and ¢, be
correlated through a bivariate Poisson distribution (through trivariate reduction). Hence,
the jump intensities, A\, are allowed to be positively correlated. Chan (2004) assumes
that the jump sizes, 0;, have a constant correlation across contemporaneous equations and
are zero across time. An advantage with the approach used in this paper, compared to
modelling correlation through underlying parameters, i.e. correlation between o2, and/or
through correlated jump intensities \;; and/or jump sizes 6;, is that we avoid increasing
the numbers of parameters in an already richly parameterized model. Also, the main
interest of this paper is on the correlation between market returns rather than between

the underlying components.



The covariance matrix for returns is given by:

H, = H;+H, (5)
i 2 €1 2 €2
. 01t 012t I koy  o13,
€1 2 €9 2
| 12t T2t o5 103
[ o 2
_ Ult + k(Sl O’th
o 2 2 |’
O']_Qt O’Qt + l62

where the covariance between the market returns, o129 = o35, + 033, is the sum of the
covariance between the random disturbances (¢7%,) and the jump innovations (073,). To

derive a model with time-varying return correlation, the covariance for the returns is

reparameterized in the spirit of Tsay (2002, ch. 10), as 019 = p;\/ 02, + kd? \/o%t + 103,
Thus, the covariance is replaced by a parameter, p,, for the time-varying correlation times
the standard deviation of each return series. To accommodate that |p,| < 1, we use the

reparametrization®:

Pt
pr = ——.
R

The p, is parameterized as:

pr = Bo + B1€11t-1812t—1 + Bapi—_1,

where €}, 16591 = €111—1€12t-1/1/0%_103, 1 and B, measures the persistence of the
correlation over time. Note here that we use the lagged normal disturbances, €1;+_1,
instead of the total residuals, €41 = €154-1 + €2i4—1, in this specification. The reason
for this is that identification of the jump parameters (6;, \i;) is based on the normal
disturbances, €151, cf. eq.(7).0

To study the contemporaneous effects of jumps on the return correlations, the ex post
probability is used in the identification of actual jumps.” Following Maheu and McCurdy
(2004), we consider actual jumps to have occurred if the ex post probabilities of at least
one jump is larger than 0.5, i.e. Pr(n;>1|®;) =1 —Pr(ngy=0]|®;) > 0.5. The
identified jumps are then related to the estimated time-varying return correlations using

regression analysis.

"Tsay (2002) restricts p by a Fisher transformation given by p = (exp(p) —1)/(exp(p) +1). Baur (2006)
reports that the Fisher transformation is more restrictive than the transformation used in this paper and

thus less adequate.
SDirect testing of the effect of jump innovations on the time-varying return correlation dynamics resulted

in unstable models with poor convergence properties.
"This approach is similar to that used by Asgharian and Bengtsson (2006).



2.4 Estimation

The probability density function for Ry, given k independent jumps in stock market index

1 and [ independent jumps in stock market index 2 is given by:

1

f(Rt|n1t = k7n2t = l7(I)t7]_) = W

|DijtptDijt’_1/2 exp[—1/2€1;Dijip;Diji€rs],  (6)
where

T1e — Mg — k01 + )\1 01
er = Ri—p—exy= b ' : (7)
Tot — oy — 102 + Aot

b \/ o3, + ko3 0 ®)
t = )
0 \/ o3 + 103

and p, is the conditional correlation matrix

L p
py 1

Pt =

The conditional density of returns is defined by:

Pr(R¢|®;—1) = ZZf(Rt\nlt =k,ng =1,01) x Pr(ny =k,noy =1 ®4—1) (9)
k=0 1=0

and the corresponding log likelihood function is simply the sum of the log conditional

densities:
T

InL=> InPr(R|® 1).
t=1

In practice, the maximum number of jumps may be truncated to a large value 7, so that
the probability of 7 or more jumps is zero. In the empirical estimation 7 > 7 is investigated
to ensure that the likelihood and parameter estimates do not change. In the estimations

reported in the results section, 7 = 15.

3 Data

The data used in this paper are capitalization weighted daily stock price indices of the

Estonian (Tallinn, TALSE), Latvian (Riga, RIGSE)® and the Lithuanian (Vilnius, VILSE)

8There is an irregularity in the summer of 2001 in the Riga index (RIGSE), due to a power struggle in
its largest company (Latvijas Gaze). Instead of modelling this irregular period, the observations from July

25 to September 3, 2001, are replaced by interpolated values in the same way as in Brénnis et al., (2008).



stock markets. All prices are expressed in Euro.” The data set, obtained from Datastream,
covers January 3, 2000 to July 9, 2007, for a total of 7' = 1960 observations. Due to some
differences in holidays for the involved countries, the series have different shares of days for
which index stock prices are not observable. Linear interpolation was used to fill the gaps
for all series, where resulting series are then throughout for a common trading week. All
returns are calculated as y; = 100 - In(1;/I;—1), where I; is the daily price index. Table 1
reports descriptive statistics and cross correlations for the daily return series. The Ljung-
Box statistics for 10 lags (LB1g) indicate significant serial correlations. The large kurtoses
for Riga, Tallinn, and Vilnius indicate leptokurtic densities. Cross-correlations indicate

that the largest unconditional correlation is between Tallinn and Vilnius return series.

Table 1: Descriptive statistics and unconditional correlations between return series.

Exchange Mean Variance Min/Max Skewness Ex. Kurtosis Riga Tallinn Vilnius

Riga 0.09 1.64 -9.27/10.29  0.18 11.29 1
Tallinn 0.10 1.06 -5.87/12.02  0.66 14.86 0.134 1
Vilnius 0.09 1.00 -12.12/5.32 -0.95 13.68 0.145 0.242 1

4 Empirical results

4.1 Basic models

In the empirical investigation of the correlation structure between the Baltic stock market
indices, a number of different model specifications were estimated, including different lag
structures for the mean, conditional variance and autoregressive jump intensity functions.
Although, in some specifications with more lags, the Akaike Information Criteria (AIC)

and autocorrelation properties were slightly improved, the identification of the parameters

9This implies that the analyzed return series also contain variation due to exchange rate movements.
Since the paper is written from an international investor perspective, i.e. we are interested in Euro returns,
the effects of these variations are included in the analysis. Also, the currencies of the considered countries
have been pegged (Latvian to a basket of major currencies since 1994, and to the Euro from 2005; Estonian
to the Deutsche Mark since 1992, and later to the Euro after its introduction; Lithuania had a US dollar-
based currency board arrengement since 1994, moved to the Euro peg in 2002) under the period of study

and have been rather stable during, at least, the later parts of the sample period.



in the time-varying correlation function became numerically unstable with more elaborate
lag structures. Hence, as the focus of this paper is mainly on the correlation functions, the
more simple model specifications were favored and utilized in the analysis. Overall, the
EGARCH specification for the conditional variance was favored in terms of AIC compared
to corresponding GARCH specifications.

Initially, we considered models without jumps (for the purpose of comparison), i.e.
with residuals specified as €, = Ry — ;. Table 2 reports on the estimation results for this
model specification with time-varying correlations.

The results indicate that the average correlation between Tallinn-Riga, Tallinn-Vilnius,
and Vilnius-Riga is 0.120 (s.d. 0.065), 0.217 (s.d. 0.106), and 0.115 (s.d. 0.065), re-
spectively.! Note that for each series, we obtain two sets of parameter estimates due to
the bivariate structure of the models. That is, for the Riga series, we obtain one set of
estimates from the bivariate model with Tallinn, and another set of estimates from the
bivariate model for Riga and Vilnius. However, the estimates for the same series do not

differ much between the models. Figure 1 displays the time-varying correlations.

— Tallinn-Vilnius —— Tallinn-Riga Vilnius-Riga

0.80 -

0.60 - ‘i
0.40 - f\N Vl\/
0.20 -

0.00 -

Ao

-0.20 A

-0.40 ‘ ‘ ‘ \ \ \
2000 2001 2002 2003 2004 2005 2006 2007

Figure 1: Time-varying return correlations.

Notably, there is a number of sharp spikes, both positive and negative, in the time-varying
correlations for all considered indices, possibly due to market jumps. This is most pro-
nounced for the time-varying correlation between the Tallinn and Vilnius stock market
returns. The persistence in the time-varying correlations are high, as indicated by the
significant lagged correlation parameters (35 in Table 2) that takes on values above 0.9

for all the models.

10 Constant correlation models without jumps gave similar parameter estimates and correlations close to

the mean of the time-varying correlations.
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Table 3 report estimates for constant correlation models including the jump component.
Including a jump component in the models notably improves the AIC, compared to the
models with constant correlation and no jump component.!! It is worth noting that the
estimated mean jump sizes (0;) are small, and significant only for Riga in the bivariate
model for the Vilnius and Riga series, as the estimated standard deviations are, in gen-
eral, quite large. However, the estimated jump parameters (6;,\;;) are jointly significant,
as indicated by a LR test, when comparing with models with no jumps and constant corre-
lations.'? The parameter estimates for the conditional mean jump intensities ()\;) indicate
that the persistence in jump intensity is high (and statistically significant) both for Riga
(0.974, 0.978) and Vilnius (0.986, 0.991), while it is lower for Tallinn (0.481, 0.485). The
inclusion of the jump component in the models also removed some of the autocorrelations
present in the models without a jump component, as indicated by the Ljung-box statistics
(LByo and LB%;). However, there is little autocorrelation remaining in the final models.!?

Table 4 reports estimates for the time-varying correlation models including the jump
components. Since the parameter estimates for the mean, EGARCH, and jump com-
ponents are similar to that reported in Table 3, only the parameters pertaining to the
specification of the time-varying correlation are reported.

For the model specification with the time-varying correlation, the AIC improves slightly
for all models. However, LR tests indicate that there are doubts about whether including
time-varying correlations improve the model fit for the bivariate model for Tallinn and
Riga series. The LR test value is 2.7832, 22.7752, and 21.2336 for the model with Tallinn
and Riga, Tallinn and Vilnius, and Vilnius and Riga series, respectively. The persistence
parameter for the time-varying correlation specification is quite high and ranges between
0.924 and 0.987. A number of different specifications for the time-varying correlation was
tried during estimation. None of these specifications, including jump residuals, €31 =
Elegt—1|Pi1—1], the ex post assessment of the expected number of jumps E [n;—1 | Pi—1],
as well as the lagged conditional variance, o2 ;, improved the fit of the model and mostly
rendered numerically unstable models. Hence, to study the effect of market jumps on the
time-varying return correlations, we instead turn our attention towards the identification

of actual jumps.

"'The estimation results available from authors upon request.
12The LR test statistics are 951, 639 and 855 for the Tallinn-Riga, Tallinn-Vilnius and Vilnius-Riga

sample, respectively.
130ther lag structures for the mean, conditional variance, and the autoregressive jump intensity have

been tried without fully removing the autocorrelations. The more parsimonious lag structures, reported

in the paper, were therefore chosen.
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Table 4: Estimation results for models including jump components and time-varying return

correlations (robust standard errors in parantheses).

Tallinn (1) - Riga (2) Tallinn (1) - Vilnius (2) Vilnius (1) - Riga (2)

Py = Bo + B1€T11—18T2t—1 + Bapr—

Bo 0.069* (0.029) 0.013  (0.007) 0.001  (0.001)
51 0.014 (0.008) 0.025* (0.009) 0.008* (0.002)
Ba 0.968* (0.201) 0.924* (0.034) 0.987* (0.004)
Log-L  -5095.29 -4793.32 -5210.01

AIC 10.213 9.609 10.448

* Significant at the 5 percent level.

4.2 The effect of jumps on time-varying return correlations

Actual jumps are determined to have occurred if the ex post probability of at least one
jump is larger than 0.5, i.e. Pr(ng; > 1| ®4) =1—Pr(ng = 0| ®;) > 0.5.'* The ez post
jump probabilities during 2006-2007 for the Riga stock market are displayed in Figure 2
along with the daily return series. Over this period, 23 return observations are determined

to be jumps according to the chosen criteria.

"To study the sensitivity of the results to the chosen criteria the analysis was repeated with

Pr(ni >1|®i) =1—Pr(ni = 0] ®;) > 0.7. This specification did not change the results.
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5 Daily returns, Riga
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Figure 2: Return and ez post jump probability, Riga.

Using the above criterion to identify actual jumps, we find that there are 270 and 95 jumps
for the bivariate model for Tallinn and Riga, 195 and 296 jumps for the model of Tallinn
and Vilnius, and 353 and 95 jumps for the Vilnius and Riga model.'> Of these, there are
12, 33, and 21 simultaneous jumps in the three corresponding bivariate models. Based
on the signs of the return series, we determine that there are 2, 9, and 8 simultaneous
negative jumps while there are 5, 10, and 4 simultaneous positive jumps for the models
for Tallinn and Riga, Tallinn and Vilnius, and Vilnius and Riga series. Thus, on a number
of occasions, there are simultaneous jumps in opposite directions.

To examine the impact of the identified jumps on the time-varying return correlations,

we run different linear regression models for the estimated time-varying correlation, p,j,

15 As mentioned before, due to the bivariate structure of the model, we obtain two estimated series
of jump probabilities (and series of identified jumps) for each return series. For example, for Tallinn we
identify one series of jump probabilities based on the bivariate model with Riga and another series based on
the bivariate model of Tallinn and Vilnius. The correlations (Spearman’s rho) between the two identified
series of jump probabilities for each return series are 0.97, 0.99, and 0.99 for Tallinn, Riga and Vilnius,
respectively. The Spearman’s rho for the actually identified jump series are 0.83, 0.96, and 0.86 for the
Tallinn, Riga, and Vilnius series. This indicates that the level of the identified jump probabilities differs
to some degree depending on the combination of the series in the model. This also explains the difference

in the number of actual identified jumps (depending on combination) for the same series.
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Table 5: Effect of identifed jumps on time-varying return correlations (robust standard

errors in parantheses).

Tallinn (1) - Riga (2) Tallinn (1) - Vilnius (2) Vilnius (1) - Riga (2)

const 0.051* (0.002) 0.008* (0.001) 0.001  (0.000)
Pr_1 0.908* (0.017) 0.959*  (0.005) 0.994* (0.002)
jump .001 . . . .001 .
dj 5 0.00 0.002 0.007*  (0.002 0.00 0.001
djumpy, 0.004  (0.002) -0.002  (0.003) 0.004* (0.001)
djumpy, 0.015" (0.003) 0.004  (0.002) 0.000  (0.001)
djumpy, 0.015"  (0.004) 0.017* (0.002) 0.001  (0.002)
dsz'mjump?‘ 0.129% (0.011) 0.052* (0.008) 0.017* (0.005)
dsimjump, 0.061% (0.024) 0.083* (0.009) 0.026* (0.004)
dsimjumij -0.077* (0.011) -0.094* (0.007) -0.033* (0.003)
R? 0.446 0.949 0.993

DW 1.961 1.899 1.966

* Significant at the 5 percent level.

on a number of dummy variables that reflect the number of jumps in the series. The
dummy variables for individual jumps in each series are djump;:, djumpzt and djump,,,
which take on a value of one if there is a jump at time ¢ in series i, a positive jump
in series ¢, or a negative jump in series i, respectively, and zero otherwise. The dummy
variable controlling for simultaneous jumps are dsimjump;;q, dsimjump;-;t, dsimjumpi_jt,
and dsimjump;;t/ ~, which take on a value of one if there are simultaneous jumps in series
1 and j, simultaneous positive jumps in series ¢ and j, and simultaneous negative jumps
in series ¢ and j, and simultaneous jumps of opposite sign in series ¢ and j, respectively,

and zero otherwise.! Table 5 report estimation results for the model specification with

the highest adjusted R2.

'The lagged correlation p,_; is also included in all regressions to control for serial correlation.
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From Table 5 we see that a jump in one series, controlling for simultaneous jumps, con-
tributes positively (when significant) to the time-varying correlations. On average, the
time-varying correlation between Tallinn and Vilnius series increases with 0.007 when
there are positive jumps on the stock market in Tallinn. Both positive as well as negative
jumps on the Riga stock market increase the correlation between Tallinn and Riga by
on average 0.015. Negative jumps on the Vilnius stock exchange on average increase the
correlation between both the Tallinn and Vilnius (with 0.017), as well as the Vilnius and
Riga (with 0.004) series. Overall, the effects of the individual jumps, when controlling for
simultaneous jumps, is rather small. For example, the correlation between the Tallinn-
Vilnius return series increase on average from 0.228 to 0.245 when there are isolated jumps
on the Vilnius stock market.

For simultaneous jumps in the series, the effect on the time-varying correlations de-
pends on the direction of the jumps. For example, the time-varying correlation increases
on average with 0.129 for simultaneous positive jumps, and with 0.061 for simultaneous
negative jumps in the Tallinn-Riga model. Thus, the average correlation almost doubles
(compared to the model with constant correlation) on days when there are simultaneous
positive jumps. Notably the impact on the correlation between the Tallinn and Riga se-
ries is much larger when markets are jointly rising, compared to when markets are jointly
falling. The opposite is true for Tallinn-Vilnius and Vilnius-Riga models, where the cor-
relation increases on average with 0.052 and 0.017 for simultaneous positive jumps, and
0.083 and 0.026 for simultaneous negative jumps. These changes correspond to a correla-
tion increase ranging from 11 to 34 percent. Note that these results could be related to the
contagion literature, where positive contagion is defined as an increase in the correlation
caused by positive shocks, while an increase in the correlation due to negative shocks is
usually referred to as negative contagion (Baur and Fry, 2005).

On the occasions when there are simultaneous jumps in opposite directions, the cor-
relations decreases on average with 0.077, 0.094, and 0.033 for the Tallinn-Riga, Tallinn-
Vilnius, and Vilnius-Riga correlation series, respectively. Including dsimjump;j, i.e. con-
trolling for simultaneous jumps with no regard to the direction of the jumps, in general,

yields an insignificant impact on the time-varying correlations.

5 Concluding remarks

The results of this paper show a strong support for models including a jump component

(compared to the EGARCH-alternatives), as well as support for time-varying return cor-



17

relations over constant correlation models. In general, the number of identified jumps
during the period may seem large, at least, compared to results for developed markets.
For example, Bollerslev et al., (2008) find on average 7 major jumps in equity market
indices for a number of developed countries during the period 2001-2005. Kim and Mei
(2001), however, report 71 identified price jumps for the Hong Kong stock market during
1989-1993. Thus, our results are in line with the idea that the emerging stock markets
are, in general, more volatile and have empirical return distributions with fatter tails than
more developed markets (e.g., Harvey, 1995; Bekaert and Harvey, 2002). A possible ex-
planation to the large number of identified jumps is that, the markets under study are
relatively small with a few large institutional traders active on all three markets. Thus, a
number of these jumps may be driven by liquidity motivated trading.

The time-varying return correlations increase slightly when there are individual market
jumps (i.e. conditional on being non-simultaneous jumps) for some of the markets. For
simultaneous jumps, we find that the effect of these on the return correlations depend on
the jump signs. This is particularly important to keep in mind when studying jump corre-
lations (e.g., Chan, 2004; Asgharian and Bengtsson, 2006), as a positive jump correlation,
i.e. the correlation between jump intensities with no regard to the sign of a jump, often is
taken as a sign of increasing return correlations. This becomes even more important for
emerging markets, where more jumps in both directions could be expected. In this paper,
we find that on average 58 percent of the simultaneous jumps (over all samples) are of
the same sign, and as many as 42 percent are of opposite sign. In addition, we find that
the correlation increases by as much as 100 percent on average due to simultaneous posi-
tive jumps (for the Tallinn-Riga model), but by 47 percent due to simultaneous negative
jumps.”

Overall, we find that stock market return correlations increase mainly due to simulta-
neous market jumps, that may depend on other factors than market crises, while individual
(non-simultaneous jumps) only have small effects. The underlying model could also be of
use for studies of the correlation between stock and bond markets, thus, of the so called
flight-to-quality effect. For example, if there is a negative jump in the stock market to-
gether with a decrease in the correlation coefficient, this may indicate the flight-to-quality
from stocks to bonds. Similar patterns on two stock markets are harder to interpret, as

investor’s preferences could also be affected by the liquidity on the markets. However,

"However, since the results are based on a few observations, as there is only a small number of simul-

taneous jumps, conclusions should be interpreted with some caution.
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studying the possible impact of market jumps on return correlation dynamics and, in par-
ticular, how these effects may differ between financial assets and markets, is useful for risk

management and portfolio diversification.
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