
The Impact of Stock Market Jumps on Time-Varying

Return Correlations: Empirical Evidence from the Baltic

Countries

Jörgen Hellström* and Albina Soultanaeva

*Umeå School of Business, Umeå University, SE-90187 Umeå

Department of Economics, Umeå University, SE-90187 Umeå

Abstract

In this paper we study the impact of market jumps on the time varying return cor-

relations between stock market indices in the Baltic countries. An EARJI-EGARCH

model facilitating direct modelling of the time varying return correlations is intro-

duced. The empirical results indicate that there is a quite large number of identi�ed

jumps in the emerging Baltic stock markets. The main �nding is that isolated market

jumps in one of the markets generally have no or small e¤ects on the time-varying

correlations. In contrast, simultaneous jumps of equal sign increase the average cor-

relation, in some cases with as much as 100 percent.
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1 Introduction

Does international portfolio diversi�cation give investors protection from extreme move-

ments (or jumps) in local stock market prices? An answer to this question obviously

depends on the correlation between returns in di¤erent markets included in the portfolio.

Empirical evidence concerning �nancial asset and market returns (e.g., Fustenberg

and Jeon, 1989; Koch and Koch, 1991; Erb et al., 1994) often points towards time-varying

correlation structures that tend to increase during unstable periods. Karolyi and Stulz

(1996), Ramchand and Susmel (1998) and Longin and Solnik (1995, 2001), among others,

found that the correlations between major stock markets rose during periods of high

volatility or during market crises. In general, the literature on contagion1 (e.g., Claessens,

2001; Forbes and Rigobon, 2002) often �nds that the cross-market correlation coe¢ cients

in a stable environment are statistically di¤erent (lower) from the correlation coe¢ cients

during unstable periods. Even though international stock market correlations have received

a lot of attention in the literature, due to its importance in portfolio and risk management

(e.g., Fazio, 2007; Knif and Pynnönen, 2007; Campbell et al., 2008), less is known about

correlation responses to large shocks (jumps) in stock market returns.

To shed some light on this issue, the current paper studies the impact of large dis-

crete changes in stock market prices (jumps) on time-varying return correlations. More

speci�cally, we study whether the correlations of stock market returns di¤er when there

are smooth changes in market returns or large discrete changes (jumps). The study is

performed on stock market data for the Baltic countries (Estonia, Latvia and Lithua-

nia) which have previously received little attention in the �nancial literature. Despite the

bene�ts of diversifying into emerging markets (see, Bekaert and Harvey, 2002), portfolio

managers often shy away from these markets due to the high volatility. Thus, improved

knowledge about emerging stock markets, in this case the Baltic stock markets, may reduce

the uncertainty about such an investment.

In the empirical analysis a bivariate Exponential Autoregressive Jump Intensity (EARJI)-

EGARCH model, based on Chan (2004), is introduced to identify stock market jumps as

well as to estimate time varying return correlations. The possible e¤ect of the identi�ed

stock market jumps on the time varying return correlations are then analyzed in separate

regressions.

This paper contributes to the existing literature in several ways. First, in contrast to

1Contagion is commonly de�ned as an increase in stock market co-movements after a shock or a �nancial

crisis.
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the earlier literature on contagion, where shocks or periods of �nancial turmoil usually

are pre-de�ned by the authors, we utilize a data driven procedure to identify large shocks

labelled as jumps. Thus, the results of this paper are, in this regard, more general and

pertain to any market shocks rather than to prespeci�ed shocks or to periods of �nancial

turmoil. Second, the e¤ects of market jumps on the dynamics of time-varying return

correlations have not previously, to the authors knowledge, been addressed as directly

as in this paper. In the literature on jump spillovers, Asgharian and Bengtsson (2006)

found earlier that the correlation structure between the jump processes of returns di¤ers

signi�cantly from the correlation between the regular return components (i.e. the parts

that are not jumps). In comparison to Asgharian and Bengtsson (2006), we focus directly

on the question of how jumps a¤ect the return correlations, whereas they are mainly

concerned with the correlation between jumps, as well as, spillovers of jumps between

international markets. Note that a high correlation between jumps does not necessarily

imply a high correlation between returns, since jumps may be in di¤erent directions, i.e.

correspond to large positive and negative changes in stock market prices. Third, in this

paper the class of mixed GARCH-jump models (e.g., Chan and Maheu, 2002) is extended

to a speci�cation with a time varying return correlation. The earlier multivariate models

by e.g., Chan (2004), have instead implicitly modelled time varying return correlation

through correlated jump components. Fourth, empirical evidence on the Baltic stock

markets, which are less studied in the �nancial literature, is provided.

In Section 2 of the paper the econometric framework is outlined. Section 3 describes

the data set used in the empirical study. Section 4 reports on the empirical results, while

the �nal section discusses the results and concludes the paper.

2 A bivariate EARJI-EGARCH model with time-varying

correlation

2.1 Background

The model used in the empirical analysis belongs to the class of GARCH-Jump mixture

models originating from Press (1967), who introduced a jump model, where the arrival of

jumps is governed by a Poisson distribution.2 The early version of the model assumed that

there is a constant number of large discrete price movements (jumps) within a �xed time

2The basic jump model by Press has been used in mainly �nancial applications by, e.g., Jorion (1988),

Vlaar and Palm (1993) and Nieuwland et al., (1994).
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interval. The average number of jump events in a time interval is called the jump inten-

sity. Chan and Maheu (2002) extended the model to include time-varying (ARMA) jump

intensities, whereas Hellström et al., (2008) introduced an exponential version of the time-

varying jump intensity to account for asymmetric responses to jump innovations. Chan

(2003, 2004) considered bivariate extensions of the model with correlated jump dynam-

ics. However, their study, based on the multivariate GARCH parametrization (BEKK) is

limited to the analysis of the correlation between jump components only. In contrast to

the earlier studies, we focus directly on the correlation between market returns through

a reparameterization of the covariance matrix for the market returns (e.g., Tsay, 2002,

ch. 10). Thus, the covariances and correlations between market returns capture the co-

movements driven by both the innovations not associated with jumps and by the jump

innovations. This allows us to directly study the impact of market jumps on the return

correlation. To explore the e¤ect of market jumps on the time-varying return correlations,

actual jumps are �rst identi�ed and then in a second step used to explain the time-varying

correlation.

2.2 A bivariate EARJI-EGARCH model

To study the time-varying correlation between the stock market returns r1t and r2t a

bivariate model based on Chan (2004) is outlined. The bivariate model structure, opposed

to a trivariate structure, is chosen to simplify the identi�cation of the time-varying second

order moments.3 Given the information set at time t � 1, �it�1 = frit�1; :::; ri1g for
i = 1; 2;4 the model is speci�ed as:

Rt = �t + �1t + �2t: (1)

Here Rt; �t; �1t and �2t are 2�1 vectors denoting the returns, the conditional mean
functions speci�ed as �it = �0i +

PL
l=1 �lirit�l, the random disturbances, and the jump

innovations, respectively.

The jump innovation component is de�ned as:

�2t =

266664
n1tX
k=1

Y1t;k � Et�1

 
n1tX
k=1

Y1t;k

!
n2tX
l=1

Y2t;l � Et�1

 
n2tX
l=1

Y2t;l

!
377775 ; (2)

3Since the model is already highly parameterized in its univariate form and is estimated by integrating

over the jump distribution, a trivariate structure would be numerically more complicated to estimate

compared to the bivariate structure.
4Throughout the rest of the paper i = 1; 2:
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where each of the jump size variables Yit;j is assumed to be independent and normally

distributed with mean �i and variance �2i . The jumps, nit, in the market returns are

assumed to be generated independently of each other by an independent bivariate Poisson

distribution with time-varying jump intensity parameters �it. The parameter �it is the

expected conditional number of jumps, nit over the time interval (t� 1; t), i.e. �it �
E [nitj�it�1]. The bivariate Poisson density is speci�ed as:

Pr(n1t = k; n2t = l j �t�1) =
exp(��1t)�k1t

k!

exp(��2t)�l2t
l!

: (3)

To allow the jump intensities to vary over time, �it is speci�ed in an Exponential Autore-

gressive Jump Intensity (EARJI) form given by:

ln(�it) = 
0i + 
1i ln(�it�1) + 
2i�it�1:

In this speci�cation, the parameter 
1i measures the persistence and 
2i measures the pos-

sible asymmetric e¤ect of shocks to the jump intensity (�it). That is, a positive parameter

value for 
2i indicates that a positive shock produces a larger impact on the conditional

jump intensity than a negative shock of an equal magnitude. The �it�1 represents the

innovation to �it�1, measured ex post. This measurable shock (intensity residual), which

is the unpredictable component a¤ecting the jump intensity is given by:

�it�1 = E [nit�1 j �it�1]� �it�1 =
1X
�=0

� � Pr (nit�1 = � j �it�1)� �it�1:

E [nit�1 j �it�1] is the ex post assessment of the expected number of jumps that occurred
from t � 2 to t � 1; whereas, �it�1 is the conditional ex ante expectation of nit�1, given
the information set �it�2, and Pr (nit�1 = � j �it�1) is the ex post distribution of nit�1,
given the information at time t� 1: Having observed rit and using Bayes�rule, the ex post
probability that � jumps occurred at time t is given by:

Pr (nit = � j �it) =
f (rit j nit = �; �it�1) Pr (nit = � j �it�1)

f (rit j �it�1)
; � = 0; 1; 2; :::: (4)

Here, f (rit j nit = �; �it�1) is the marginal conditional density function for rit given that

� jumps occurred, Pr (nit = � j �it�1) is the marginal Poisson density function for nit =
� implied by eq.(3), and f (rit j �it�1) is the conditional density function for rit. The
conditional density function for rit is speci�ed and discussed in Section 2.2.

2.3 Time-varying return correlation

Given that the random disturbances in �1t and the jump innovation components in �2t

are contemporaneously independent of each other, i.e. E("1it"2jt) = 0 for i; j = 1; 2, the
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covariance matrix of returns may be expressed as:

Var(rtj�it�1) = V ar("1tj�it�1) + V ar("2tj�it�1):

The disturbances in �1t are assumed to be normal i.i.d. mean-zero innovations with the

conditional covariance matrix:

~Ht = V ar("1tj�it�1) =

24 �21t �"112t

�"112t �22t

35 :
The disturbances are speci�ed as "1it = �itzt, where zt � N(0; 1); and �it is assumed to

follow an EGARCH(1,1) process (Nelson, 1991). The process for the conditional variance

is speci�ed as:

ln(�2it) = !0i + !1i it�1 + !2i ln(�
2
it�1) + !3i

�
j it�1j �

p
2=�

�
;

where  it = "1it=�it is the normalized residual. The �
"1
12t is the covariance between "11t

and "12t.

Conditional on k jumps in stock market index 1 and l jumps in stock market index 2,

the jump innovations in �2t (cf. eq. (2)) have a bivariate normal distribution with zero

mean and a covariance matrix given by:

�Ht = V ar("2tj�it�1) =

24 k�21 �"212t

�"212t l�22

35 :
The conditional variances for the jump components are given by k�21 and l�

2
2 while the

covariance between "21t and "22t is denoted with �
"2
12t. Note that �

"2
12t is thought to capture

the possible covariance between either the jump sizes (�i) or jump intensities (�it); or

both. In contrast, Chan (2004) lets nit, the frequency of jumps between t � 1 and t, be
correlated through a bivariate Poisson distribution (through trivariate reduction). Hence,

the jump intensities, �it, are allowed to be positively correlated. Chan (2004) assumes

that the jump sizes, �i, have a constant correlation across contemporaneous equations and

are zero across time. An advantage with the approach used in this paper, compared to

modelling correlation through underlying parameters, i.e. correlation between �2it, and/or

through correlated jump intensities �it and/or jump sizes �i, is that we avoid increasing

the numbers of parameters in an already richly parameterized model. Also, the main

interest of this paper is on the correlation between market returns rather than between

the underlying components.



6

The covariance matrix for returns is given by:

Ht = ~Ht + �Ht (5)

=

24 �21t �"112t

�"112t �22t

35+
24 k�21 �"212t

�"212t l�22

35
=

24 �21t + k�
2
1 �12t

�12t �22t + l�
2
2

35 ;
where the covariance between the market returns, �12t = �"112t + �"212t, is the sum of the

covariance between the random disturbances (�"112t) and the jump innovations (�
"2
12t). To

derive a model with time-varying return correlation, the covariance for the returns is

reparameterized in the spirit of Tsay (2002, ch. 10), as �12t = �t

q
�21t + k�

2
1

q
�22t + l�

2
2.

Thus, the covariance is replaced by a parameter, �t, for the time-varying correlation times

the standard deviation of each return series. To accommodate that j�tj < 1, we use the

reparametrization5:

�t =
��tp
1 + ��2t

:

The ��t is parameterized as:

��t = �0 + �1"
�
11t�1"

�
12t�1 + �2�t�1;

where "�11t�1"
�
12t�1 = "11t�1"12t�1=

q
�21t�1�

2
2t�1 and �2 measures the persistence of the

correlation over time. Note here that we use the lagged normal disturbances, "1it�1,

instead of the total residuals, "it�1 = "1it�1 + "2it�1, in this speci�cation. The reason

for this is that identi�cation of the jump parameters (�i; �it) is based on the normal

disturbances, "1it�1, cf. eq.(7).6

To study the contemporaneous e¤ects of jumps on the return correlations, the ex post

probability is used in the identi�cation of actual jumps.7 Following Maheu and McCurdy

(2004), we consider actual jumps to have occurred if the ex post probabilities of at least

one jump is larger than 0.5, i.e. Pr (nit � 1 j �it) = 1 � Pr (nit = 0 j �it) > 0:5. The

identi�ed jumps are then related to the estimated time-varying return correlations using

regression analysis.
5Tsay (2002) restricts � by a Fisher transformation given by � = (exp(~�)�1)=(exp(~�)+1). Baur (2006)

reports that the Fisher transformation is more restrictive than the transformation used in this paper and

thus less adequate.
6Direct testing of the e¤ect of jump innovations on the time-varying return correlation dynamics resulted

in unstable models with poor convergence properties.
7This approach is similar to that used by Asgharian and Bengtsson (2006).
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2.4 Estimation

The probability density function for Rt, given k independent jumps in stock market index

1 and l independent jumps in stock market index 2 is given by:

f(Rtjn1t = k; n2t = l;�t�1) =
1

2�N=2
jDijt�tDijtj�1=2 exp[�1=2�1tDijt�tDijt�1t]; (6)

where

�1t = Rt � �t � �2t =

24 r1t � �1t � k�1 + �1t�1
r2t � �2t � l�2 + �2t�2

35 ; (7)

Dt =

24 q�21t + k�21 0

0
q
�22t + l�

2
2

35 ; (8)

and �t is the conditional correlation matrix

�t =

24 1 �t

�t 1

35 :
The conditional density of returns is de�ned by:

Pr(Rtj�t�1) =
1X
k=0

1X
l=0

f(Rtjn1t = k; n2t = l;�t�1)� Pr(n1t = k; n2t = l j �t�1) (9)

and the corresponding log likelihood function is simply the sum of the log conditional

densities:

lnL =

TX
t=1

ln Pr(Rtj�t�1):

In practice, the maximum number of jumps may be truncated to a large value � , so that

the probability of � or more jumps is zero. In the empirical estimation ~� > � is investigated

to ensure that the likelihood and parameter estimates do not change. In the estimations

reported in the results section, � = 15.

3 Data

The data used in this paper are capitalization weighted daily stock price indices of the

Estonian (Tallinn, TALSE), Latvian (Riga, RIGSE)8 and the Lithuanian (Vilnius, VILSE)

8There is an irregularity in the summer of 2001 in the Riga index (RIGSE), due to a power struggle in

its largest company (Latvijas Gaze). Instead of modelling this irregular period, the observations from July

25 to September 3, 2001, are replaced by interpolated values in the same way as in Brännäs et al., (2008).
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stock markets. All prices are expressed in Euro.9 The data set, obtained from Datastream,

covers January 3, 2000 to July 9, 2007, for a total of T = 1960 observations. Due to some

di¤erences in holidays for the involved countries, the series have di¤erent shares of days for

which index stock prices are not observable. Linear interpolation was used to �ll the gaps

for all series, where resulting series are then throughout for a common trading week. All

returns are calculated as yt = 100 � ln(It=It�1), where It is the daily price index. Table 1
reports descriptive statistics and cross correlations for the daily return series. The Ljung-

Box statistics for 10 lags (LB10) indicate signi�cant serial correlations. The large kurtoses

for Riga, Tallinn, and Vilnius indicate leptokurtic densities. Cross-correlations indicate

that the largest unconditional correlation is between Tallinn and Vilnius return series.

Table 1: Descriptive statistics and unconditional correlations between return series.

Exchange Mean Variance Min/Max Skewness Ex. Kurtosis Riga Tallinn Vilnius

Riga 0.09 1.64 -9.27/10.29 0.18 11.29 1

Tallinn 0.10 1.06 -5.87/12.02 0.66 14.86 0.134 1

Vilnius 0.09 1.00 -12.12/5.32 -0.95 13.68 0.145 0.242 1

4 Empirical results

4.1 Basic models

In the empirical investigation of the correlation structure between the Baltic stock market

indices, a number of di¤erent model speci�cations were estimated, including di¤erent lag

structures for the mean, conditional variance and autoregressive jump intensity functions.

Although, in some speci�cations with more lags, the Akaike Information Criteria (AIC)

and autocorrelation properties were slightly improved, the identi�cation of the parameters

9This implies that the analyzed return series also contain variation due to exchange rate movements.

Since the paper is written from an international investor perspective, i.e. we are interested in Euro returns,

the e¤ects of these variations are included in the analysis. Also, the currencies of the considered countries

have been pegged (Latvian to a basket of major currencies since 1994, and to the Euro from 2005; Estonian

to the Deutsche Mark since 1992, and later to the Euro after its introduction; Lithuania had a US dollar-

based currency board arrengement since 1994, moved to the Euro peg in 2002) under the period of study

and have been rather stable during, at least, the later parts of the sample period.
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in the time-varying correlation function became numerically unstable with more elaborate

lag structures. Hence, as the focus of this paper is mainly on the correlation functions, the

more simple model speci�cations were favored and utilized in the analysis. Overall, the

EGARCH speci�cation for the conditional variance was favored in terms of AIC compared

to corresponding GARCH speci�cations.

Initially, we considered models without jumps (for the purpose of comparison), i.e.

with residuals speci�ed as �t = Rt��t. Table 2 reports on the estimation results for this
model speci�cation with time-varying correlations.

The results indicate that the average correlation between Tallinn-Riga, Tallinn-Vilnius,

and Vilnius-Riga is 0.120 (s.d. 0.065), 0.217 (s.d. 0.106), and 0.115 (s.d. 0.065), re-

spectively.10 Note that for each series, we obtain two sets of parameter estimates due to

the bivariate structure of the models. That is, for the Riga series, we obtain one set of

estimates from the bivariate model with Tallinn, and another set of estimates from the

bivariate model for Riga and Vilnius. However, the estimates for the same series do not

di¤er much between the models. Figure 1 displays the time-varying correlations.

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

2000 2001 2002 2003 2004 2005 2006 2007

Tallinn-Vilnius Tallinn-Riga Vilnius-Riga

Figure 1: Time-varying return correlations.

Notably, there is a number of sharp spikes, both positive and negative, in the time-varying

correlations for all considered indices, possibly due to market jumps. This is most pro-

nounced for the time-varying correlation between the Tallinn and Vilnius stock market

returns. The persistence in the time-varying correlations are high, as indicated by the

signi�cant lagged correlation parameters (�2 in Table 2) that takes on values above 0.9

for all the models.
10Constant correlation models without jumps gave similar parameter estimates and correlations close to

the mean of the time-varying correlations.
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Table 3 report estimates for constant correlation models including the jump component.

Including a jump component in the models notably improves the AIC, compared to the

models with constant correlation and no jump component.11 It is worth noting that the

estimated mean jump sizes (�i) are small, and signi�cant only for Riga in the bivariate

model for the Vilnius and Riga series, as the estimated standard deviations are, in gen-

eral, quite large. However, the estimated jump parameters (�i,�it) are jointly signi�cant,

as indicated by a LR test, when comparing with models with no jumps and constant corre-

lations.12 The parameter estimates for the conditional mean jump intensities (�t) indicate

that the persistence in jump intensity is high (and statistically signi�cant) both for Riga

(0.974, 0.978) and Vilnius (0.986, 0.991), while it is lower for Tallinn (0.481, 0.485). The

inclusion of the jump component in the models also removed some of the autocorrelations

present in the models without a jump component, as indicated by the Ljung-box statistics

(LB10 and LB210). However, there is little autocorrelation remaining in the �nal models.
13

Table 4 reports estimates for the time-varying correlation models including the jump

components. Since the parameter estimates for the mean, EGARCH, and jump com-

ponents are similar to that reported in Table 3, only the parameters pertaining to the

speci�cation of the time-varying correlation are reported.

For the model speci�cation with the time-varying correlation, the AIC improves slightly

for all models. However, LR tests indicate that there are doubts about whether including

time-varying correlations improve the model �t for the bivariate model for Tallinn and

Riga series. The LR test value is 2.7832, 22.7752, and 21.2336 for the model with Tallinn

and Riga, Tallinn and Vilnius, and Vilnius and Riga series, respectively. The persistence

parameter for the time-varying correlation speci�cation is quite high and ranges between

0.924 and 0.987. A number of di¤erent speci�cations for the time-varying correlation was

tried during estimation. None of these speci�cations, including jump residuals, �̂2t�1 =

E[�2t�1j�it�1], the ex post assessment of the expected number of jumps E [nit�1 j �it�1],
as well as the lagged conditional variance, �2t�1, improved the �t of the model and mostly

rendered numerically unstable models. Hence, to study the e¤ect of market jumps on the

time-varying return correlations, we instead turn our attention towards the identi�cation

of actual jumps.

11The estimation results available from authors upon request.
12The LR test statistics are 951, 639 and 855 for the Tallinn-Riga, Tallinn-Vilnius and Vilnius-Riga

sample, respectively.
13Other lag structures for the mean, conditional variance, and the autoregressive jump intensity have

been tried without fully removing the autocorrelations. The more parsimonious lag structures, reported

in the paper, were therefore chosen.
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Table 4: Estimation results for models including jump components and time-varying return

correlations (robust standard errors in parantheses).

Tallinn (1) - Riga (2) Tallinn (1) - Vilnius (2) Vilnius (1) - Riga (2)

��t = �0 + �1"
�
11t�1"

�
12t�1 + �2�t�1

�0 0.069� (0.029) 0.013 (0.007) 0.001 (0.001)

�1 0.014 (0.008) 0.025� (0.009) 0.008� (0.002)

�2 0.968� (0.201) 0.924� (0.034) 0.987� (0.004)

Log-L -5095.29 -4793.32 -5210.01

AIC 10.213 9.609 10.448

� Signi�cant at the 5 percent level.

4.2 The e¤ect of jumps on time-varying return correlations

Actual jumps are determined to have occurred if the ex post probability of at least one

jump is larger than 0.5, i.e. Pr (nit � 1 j �it) = 1� Pr (nit = 0 j �it) > 0:5.14 The ex post
jump probabilities during 2006-2007 for the Riga stock market are displayed in Figure 2

along with the daily return series. Over this period, 23 return observations are determined

to be jumps according to the chosen criteria.

14To study the sensitivity of the results to the chosen criteria the analysis was repeated with

Pr (nit � 1 j �it) = 1� Pr (nit = 0 j �it) > 0:7: This speci�cation did not change the results.



14

Ex post jump probability, Riga

0

0.5

1

06-01-02 06-04-02 06-07-02 06-10-02 07-01-02 07-04-02 07-07-02

Daily returns, Riga

-8
-6
-4
-2
0
2
4
6

06-01-02 06-04-02 06-07-02 06-10-02 07-01-02 07-04-02 07-07-02

Figure 2: Return and ex post jump probability, Riga.

Using the above criterion to identify actual jumps, we �nd that there are 270 and 95 jumps

for the bivariate model for Tallinn and Riga, 195 and 296 jumps for the model of Tallinn

and Vilnius, and 353 and 95 jumps for the Vilnius and Riga model.15 Of these, there are

12, 33, and 21 simultaneous jumps in the three corresponding bivariate models. Based

on the signs of the return series, we determine that there are 2, 9, and 8 simultaneous

negative jumps while there are 5, 10, and 4 simultaneous positive jumps for the models

for Tallinn and Riga, Tallinn and Vilnius, and Vilnius and Riga series. Thus, on a number

of occasions, there are simultaneous jumps in opposite directions.

To examine the impact of the identi�ed jumps on the time-varying return correlations,

we run di¤erent linear regression models for the estimated time-varying correlation, �̂ijt,

15As mentioned before, due to the bivariate structure of the model, we obtain two estimated series

of jump probabilities (and series of identi�ed jumps) for each return series. For example, for Tallinn we

identify one series of jump probabilities based on the bivariate model with Riga and another series based on

the bivariate model of Tallinn and Vilnius. The correlations (Spearman�s rho) between the two identi�ed

series of jump probabilities for each return series are 0.97, 0.99, and 0.99 for Tallinn, Riga and Vilnius,

respectively. The Spearman�s rho for the actually identi�ed jump series are 0.83, 0.96, and 0.86 for the

Tallinn, Riga, and Vilnius series. This indicates that the level of the identi�ed jump probabilities di¤ers

to some degree depending on the combination of the series in the model. This also explains the di¤erence

in the number of actual identi�ed jumps (depending on combination) for the same series.
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Table 5: E¤ect of identifed jumps on time-varying return correlations (robust standard

errors in parantheses).

Tallinn (1) - Riga (2) Tallinn (1) - Vilnius (2) Vilnius (1) - Riga (2)

const 0.051� (0.002) 0.008� (0.001) 0.001 (0.000)

�̂t�1 0.908� (0.017) 0.959� (0.005) 0.994� (0.002)

djump+1t 0.001 (0.002) 0.007� (0.002) 0.001 (0.001)

djump�1t 0.004 (0.002) -0.002 (0.003) 0.004� (0.001)

djump+2t 0.015� (0.003) 0.004 (0.002) 0.000 (0.001)

djump�2t 0.015� (0.004) 0.017� (0.002) 0.001 (0.002)

dsimjump+t 0.129� (0.011) 0.052� (0.008) 0.017� (0.005)

dsimjump�t 0.061� (0.024) 0.083� (0.009) 0.026� (0.004)

dsimjump
+=�
t -0.077� (0.011) -0.094� (0.007) -0.033� (0.003)

R2 0.446 0.949 0.993

DW 1.961 1.899 1.966

� Signi�cant at the 5 percent level.

on a number of dummy variables that re�ect the number of jumps in the series. The

dummy variables for individual jumps in each series are djumpit, djump+it and djump
�
it ,

which take on a value of one if there is a jump at time t in series i, a positive jump

in series i, or a negative jump in series i, respectively, and zero otherwise. The dummy

variable controlling for simultaneous jumps are dsimjumpijt, dsimjump+ijt, dsimjump
�
ijt,

and dsimjump+=�ijt , which take on a value of one if there are simultaneous jumps in series

i and j, simultaneous positive jumps in series i and j, and simultaneous negative jumps

in series i and j, and simultaneous jumps of opposite sign in series i and j, respectively,

and zero otherwise.16 Table 5 report estimation results for the model speci�cation with

the highest adjusted R2.

16The lagged correlation �̂t�1 is also included in all regressions to control for serial correlation.
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From Table 5 we see that a jump in one series, controlling for simultaneous jumps, con-

tributes positively (when signi�cant) to the time-varying correlations. On average, the

time-varying correlation between Tallinn and Vilnius series increases with 0:007 when

there are positive jumps on the stock market in Tallinn. Both positive as well as negative

jumps on the Riga stock market increase the correlation between Tallinn and Riga by

on average 0:015: Negative jumps on the Vilnius stock exchange on average increase the

correlation between both the Tallinn and Vilnius (with 0:017), as well as the Vilnius and

Riga (with 0:004) series. Overall, the e¤ects of the individual jumps, when controlling for

simultaneous jumps, is rather small. For example, the correlation between the Tallinn-

Vilnius return series increase on average from 0:228 to 0:245 when there are isolated jumps

on the Vilnius stock market.

For simultaneous jumps in the series, the e¤ect on the time-varying correlations de-

pends on the direction of the jumps. For example, the time-varying correlation increases

on average with 0:129 for simultaneous positive jumps, and with 0:061 for simultaneous

negative jumps in the Tallinn-Riga model. Thus, the average correlation almost doubles

(compared to the model with constant correlation) on days when there are simultaneous

positive jumps. Notably the impact on the correlation between the Tallinn and Riga se-

ries is much larger when markets are jointly rising, compared to when markets are jointly

falling. The opposite is true for Tallinn-Vilnius and Vilnius-Riga models, where the cor-

relation increases on average with 0:052 and 0:017 for simultaneous positive jumps, and

0:083 and 0:026 for simultaneous negative jumps. These changes correspond to a correla-

tion increase ranging from 11 to 34 percent. Note that these results could be related to the

contagion literature, where positive contagion is de�ned as an increase in the correlation

caused by positive shocks, while an increase in the correlation due to negative shocks is

usually referred to as negative contagion (Baur and Fry, 2005).

On the occasions when there are simultaneous jumps in opposite directions, the cor-

relations decreases on average with 0:077, 0:094, and 0:033 for the Tallinn-Riga, Tallinn-

Vilnius, and Vilnius-Riga correlation series, respectively. Including dsimjumpijt, i.e. con-

trolling for simultaneous jumps with no regard to the direction of the jumps, in general,

yields an insigni�cant impact on the time-varying correlations.

5 Concluding remarks

The results of this paper show a strong support for models including a jump component

(compared to the EGARCH-alternatives), as well as support for time-varying return cor-
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relations over constant correlation models. In general, the number of identi�ed jumps

during the period may seem large, at least, compared to results for developed markets.

For example, Bollerslev et al., (2008) �nd on average 7 major jumps in equity market

indices for a number of developed countries during the period 2001-2005. Kim and Mei

(2001), however, report 71 identi�ed price jumps for the Hong Kong stock market during

1989-1993. Thus, our results are in line with the idea that the emerging stock markets

are, in general, more volatile and have empirical return distributions with fatter tails than

more developed markets (e.g., Harvey, 1995; Bekaert and Harvey, 2002). A possible ex-

planation to the large number of identi�ed jumps is that, the markets under study are

relatively small with a few large institutional traders active on all three markets. Thus, a

number of these jumps may be driven by liquidity motivated trading.

The time-varying return correlations increase slightly when there are individual market

jumps (i.e. conditional on being non-simultaneous jumps) for some of the markets. For

simultaneous jumps, we �nd that the e¤ect of these on the return correlations depend on

the jump signs. This is particularly important to keep in mind when studying jump corre-

lations (e.g., Chan, 2004; Asgharian and Bengtsson, 2006), as a positive jump correlation,

i.e. the correlation between jump intensities with no regard to the sign of a jump, often is

taken as a sign of increasing return correlations. This becomes even more important for

emerging markets, where more jumps in both directions could be expected. In this paper,

we �nd that on average 58 percent of the simultaneous jumps (over all samples) are of

the same sign, and as many as 42 percent are of opposite sign. In addition, we �nd that

the correlation increases by as much as 100 percent on average due to simultaneous posi-

tive jumps (for the Tallinn-Riga model), but by 47 percent due to simultaneous negative

jumps.17

Overall, we �nd that stock market return correlations increase mainly due to simulta-

neous market jumps, that may depend on other factors than market crises, while individual

(non-simultaneous jumps) only have small e¤ects. The underlying model could also be of

use for studies of the correlation between stock and bond markets, thus, of the so called

�ight-to-quality e¤ect. For example, if there is a negative jump in the stock market to-

gether with a decrease in the correlation coe¢ cient, this may indicate the �ight-to-quality

from stocks to bonds. Similar patterns on two stock markets are harder to interpret, as

investor�s preferences could also be a¤ected by the liquidity on the markets. However,

17However, since the results are based on a few observations, as there is only a small number of simul-

taneous jumps, conclusions should be interpreted with some caution.
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studying the possible impact of market jumps on return correlation dynamics and, in par-

ticular, how these e¤ects may di¤er between �nancial assets and markets, is useful for risk

management and portfolio diversi�cation.
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