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Abstract

This paper studies how the possibility to postpone the unrecoverable entry and

location cost a®ects regional entry when post-entry earnings are uncertain. We

¯nd that the opportunity cost to enter today is higher when entering a region

with high uncertainty relative to a region with low uncertainty.
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1. Introduction

The decision to enter is not a single discrete choice, but may be seen as the outcome

of a sequence of conditional choices or the result of a sequential search process in

which potential ¯rms maximize future discounted net pro¯ts. Entry occurs when

the present value of the project's expected cash °ow is, at least, as large as its cost.

While there has been a number of important theoretical contributions targeting

entry decisions to an industry they have almost all neglected the spatial dimension.

For further reading about the ¯rm's entry decision see, for example, the survey of

Geroski (1991).

An important determinant to the spatial pattern of economic activity, besides

the transfer of ¯rms between regions, is ¯rms' entry location. In the framework of

Berglund (1999) potential ¯rms are confronted with a collection of disjoint regions

from which they choose the one that yields maximal discounted net pro¯ts.1 This

allows for regional comparisons of entry locations but sees the entry location de-

cision as a certain and immediate event. The framework therefore ignores future

uncertainty in the sense that new information about, for example, prices and costs

before commitment of resources may have a value. An example at the national level

are the continuously changing environmental standards. At the regional level it may

be changing conditions such as labour supply, market demand, possibility to obtain

subsidies, public investments, etc. The regional environments are dependent upon

regional policies, prices, etc. For this reason we model the entry location decision in

an uncertain world and characterize the location decision by irreversibility and the

possibility to delay. Since the future is unknown the traditional Marshallian criterion

may be incorrect as the option value of preserving the entry location opportunity is

1The setup presumes a well-informed entrepreneur or decision maker that knows the values

of included variables. The term "Marshallian criterion" is previously used by Dixit (1992). The

criterion suggests that we should calculate the net present value of an investment and invest if it is

greater than zero. This criterion has also been referred to as simply the net present value criterion.
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ignored.2

Recent research o®ers the option value theory criterion, OVTC, see McDonald

and Siegel (1986), Pindyck (1991), Dixit (1989, 1992) and Dixit and Pindyck (1994).

In contrast to the MTC the OVTC requires that future expected discounted net

pro¯ts must exceed not only the ¯xed costs but also the value of keeping the option

to entry. The reasons for the existence of the latter value is that future expected

cash °ows and costs are unknown and that the decision to enter is characterized

by irreversibility. If delaying is a viable option, seen over a active period and entry

cost, postponed entry may be more favourable than immediate entry.

In this paper, we raise the following question: How does the possibility to post-

pone entry and location decisions a®ect regional entry decisions in a model with

risky post-entry earnings using the OVTC? Or formulated in another way: How

does regional uncertainty with respect to revenues a®ect the timing of entry into a

region? The point is to account for the fact that the opportunity cost to invest today

di®ers between regions due to di®erences in uncertainty about future earnings.3

As far as we know the application of OVTC on regional entry is new. The

di®erence between this and other studies that applies the option value approach to

study ¯rm investments is the introduction of region speci¯c uncertainty. Ones the

choice of regions is done the entry location cost is sunk, i.e. there is no possibilities

to recover it.

Section 2 gives an introduction to how to include uncertainty and the timing di-

mension for the case of two regions and two time periods. The option value approach

with uncertain regional revenue and several periods is developed and discussed in

Section 3, while Section 4 concludes.

2An option represents the right to buy a security or commodity at a speci¯ed price within a

speci¯ed period of time. By option in this paper we refer to a potential entrant's right, but not its

obligation to enter a region within a speci¯c period of time.

3The reason that we concentrate on regional earnings is that a major part of new ¯rms serves

local markets. Local earnings is thereby an important determinant of new ¯rms pro¯t potential.
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2. Regional Entry

We start by introducing the notation and the intuition behind the OVTC on the

regional system by revising the two region framework of Berglund (1999). There,

a pro¯t maximizing ¯rm that has decided to enter an industry faces a system of

disjoint regions, and uses present value maximization for the choice of location.

The ¯rm also faces a set of regional variables, factor prices and a ¯nal price of the

product, pit, from the time of entry t = 0 until a known time of exit ². With two

regions, the ¯rm chooses region one, if the discounted net pro¯t in that region is

higher than in region two, i.e. if

¼1 ¡ ¼2 = F2 ¡ F1 +

²Z
0

[(p1tq1t ¡ p2tq2t)¡ (D1t ¡D2t)] exp(¡rt)dt > 0; (1)

where pitqit represents revenues and Dit operating costs in region i at time t, with

qit denoting the level of output. Each region's demand curve is downward-sloping.

Regional supply is driven by the own price, production costs, input prices and

regional market organization. The sunk and irretrievable ¯xed costs is represented

by Fi, while exp(¡rt) is a common discount factor of future revenues and costs,

where r > 0 is the risk free nominal interest rate.4 We include uncertainty by

letting future regional revenues be uncertain.

In this section we give an example with only two time periods within which

variables are constant. In the next section some of these constants would be real-

izations of stochastic processes. The ¯xed costs di®erence ¹F = F2 ¡ F1, is known

with certainty. Once a ¯rms has entered the market, it is assumed to produce one

unit per period at zero unit cost of production. In period one the regional revenues

are certain, but there are two di®erent and mutually exclusive outcomes of regional

revenues in both regions in the second period. The potential entrant values the

revenues in period two, contingent on the probability that the price will be high

or low. We denote high revenues in region i by R+

it2, and by R¡

it2 if revenues are

4Since we use the risk free interest rate we must assume that the risk over future revenues is

unrelated to what happens with the overall economy.
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low. Revenues are high with probability ® and low with probability 1 ¡ ®. Exit is

random in the sense that the entrant survives with probability ¯. Exit and revenues

are independent. If we consider the above facts and take expectations we can write

equation (1) as the di®erence in expected discounted net pro¯t between the regions

E[¼1]¡ E[¼2] = F2 ¡ F1 + (R1t1 ¡R2t1) exp(¡rt1)
+¯[®(R+

1t2
¡R+

2t2
) + (1 ¡ ®)(R¡

1t2
¡R¡

2t2
)] exp(¡rt2)]: (2)

According to MTC the entrant chooses region one if this di®erence exceeds zero.

The ¯rm is indi®erent between the two regions if equation (2) is equal to zero. If

equation (2) is less then zero, the entrant chooses region two.

An application of the OVTC does not necessarily yield the same outcome. As-

sume that the ¯rm also has the possibility to postpone entry and let ¹Rt1 = R1t1¡R2t1

denote the revenue di®erence in period one. We denote the period two di®erence in

high revenues by ¹R+
t2 , while a low revenue di®erence is denoted by ¹R¡

t2 . Equation

(2) can then be rewritten as

E[¹¼] = E[¼1]¡ E[¼2] = ¹F + ¹Rt1 exp(¡rt1) + ¯[® ¹R+

t2
+ (1¡ ®) ¹R¡

t2
] exp(¡rt2): (3)

Given the possibility to postpone entry or to enter selectively in period two, we

should compare (3) to the best available alternative in period two. The potential

entrant then faces the following decision rule: Enter into region one in the ¯rst

period if the following is true

¹F + ¹Rt1 exp(¡rt1) + ¯
h
® ¹R+

t2
+ (1¡ ®) ¹R¡

t2

i
exp(¡rt2) ¸ ®( ¹R+

t2
¡ ¹F ) exp(¡rt2); (4)

if not, wait. In the second period the ¯rm knows the outcome of revenues in both

regions and can thereby choose the most pro¯table region. The option value, i.e.

the value of the possibility to wait can be derived from (4)

O( ¹Rt1) ´ ® ¹R+

t2
exp(¡rt2)¡ ¹F (1 + ® exp(¡rt2)) ¡ ¹Rt1 exp(¡rt1)

¡¯® ¹R+

t2
exp(¡rt2)¡ ¯(1¡ ®) ¹R¡

t2
exp(¡rt2). (5)
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Table 1: Entry location choices.

MTC=OVTC, O( ¹Rt1) 6 0 MTC6=OVTC, O( ¹Rt1) > 0

E[¹¼] < 0 Region two, Entry Wait

E[¹¼] = 0 Indi®erent, Entry Wait

E[¹¼] > 0 Region one, Entry Wait

If O( ¹Rt1) is positive, it is optimal to wait. We have summarized the decision rules

in Table 1.

We conclude that in the two period case, an increased di®erence in the ¯rst

period revenues decreases the option value. Also, if the di®erence between the ¯xed

costs increases the regional entry option decreases.

This exercise tells us that considerations of regional uncertainty and the relax-

ation of the now or never assumption matter for the entry location choice, even in

this simple single ¯rm, two region, two period framework.

3. Uncertain Regional Revenue and Entry - Several Periods

In this section assume that there are more than two periods and that ¯ = 1, i.e. the

survival probability equals one. The risk neutral pro¯t maximizing potential entrant,

with monopoly right to invest, faces an instant, continuous and random revenue, Rit;

in region i for all t. The entrant does not know the future values of regional revenues,

but only their probability distributions. We assume revenues to arise according to

the following stochastic di®erential equation (a geometric Brownian motion process)

dRit = °iRitdt+ ¾iRitdzt;

withRi0 > 0 the revenue at time zero. Here, dzt is the increment of a Wiener process,

dzt = "t
p
dt with "t » N(0;1). The drift parameter, °i, is the rate of change of Rit. If

it is negative it means that revenues in region i decrease with time. If °i ¸ 0 it means
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that the revenues are constant or increasing in t. The ¾i is the di®usion coe±cient,

measuring the stochastic °uctuations around the mean. Using Ito's Lemma (e.g.,

Ito and Mckean, 1965) one can show that Rit = Ri0 exp(°i ¡ 1

2
¾2i )t + ¾izt. The

expectation of the revenue process in region i at time t ¸ 0, starting at Ri0, is given

by

E0(Rit) = Ri0 exp(°it): (6)

To study the MTC we de¯ne the expected discounted pro¯t to entry in region i at

time t = 0 and survival to in¯nity as

E0[¼i] = E0

2
4 1Z
0

(Rit ¡ Fi) exp(¡rt)dt
3
5 ; (7)

where r > 0 is the risk free nominal interest rate. For both regions we assume that

°i < r because otherwise waiting longer would always be a better policy. Since

future values of Rit are unknown and investments are irreversible in the sense that

¯xed costs cannot be recovered, there exists an opportunity cost to invest today in

regions one and two.

To study the OVTC we de¯ne the expected discounted pro¯t of entry and survival

to in¯nity in region i starting from the unknown time t = ¿i as

E0 [i] = sup
¿i

E0

2
4 1Z
¿i

(Rit ¡ Fi) exp(¡rt)dt
3
5 . (8)

The supremum is taken over all stopping times ¿i. With ¿ ¤i we denote the optimal

stopping time for the problem in (8). At each time t the potential entrant then

has an option to enter region one but also an option to enter region two, and as

a result the optimal entry time may di®er between the two regions. We want to

show that the expected value of the optimal entry time in region i, E(¿¤i ) depends

on the uncertainty in region i, ¾i, in the sense that if ¾1 > ¾2 (ceteribus paribus),

then E(¿ ¤1 ) > E(¿ ¤2 ). This will indicate that the opportunity cost to enter today in

region one, exceeds the one of region two.

Equation (8) can be rewritten as the expectation of the, known, "now or never

starting time" to in¯nity, minus the opportunity cost of exercise the regional entry
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option in region i:

E0

2
4 1Z
0

(Rit ¡ Fi) exp(¡rt)dt
3
5+ sup

¿i
E0

2
4 ¿iZ
0

¡(Rit ¡ Fi) exp(¡rt)dt
3
5 : (9)

Substitution of (6) into the Marshallian term of (9), i.e. into the ¯rst term, and

performing the integration we may conclude that the value of the ¯rst term in (9)

equals
Ri0

r ¡ °i
¡ Fi

r
.

To study in what way E(¿ ¤i ) depends on ¾i we have to solve,

sup
¿i

E0

2
4¡

¿iZ
0

(Rit ¡ Fi) exp(¡rt)dt
3
5 : (10)

According to Theorem 10.18 of Oksendal (1995) (variational inequalities for optimal

stopping) an essential step in solving the problem in (10) is to solve an equation of

the form LÁ = exp(¡rs)Ri0 where Á is a function of (s;Ri0) and LÁ is de¯ned as

LÁ =
@Á

@s
+ °iRi0

@Á

@Ri0
+
1

2
¾2iR

2

i0

@2Á

@R2
i0

: (11)

Equation (11) may be solved by separation of variables, assuming Á(s;Ri0) =

exp(¡rs)µ(Ri0). Then µ solves

1

2
µ2R2

i0

@µ2

@R2
i0

+ °iRi0
@µ

@Ri0

¡ rµ = Ri0: (12)

The general solution to equation (12) is then given by

µ(Ri0) = AR¯i1

i0 +BR¯i2

i0 +
Ri0

°i ¡ r
; (13)

where A and B are constants and ¯i1 and ¯i2 are the negative and positive roots of

the quadratic equation 1

2
¾2i ¯i(¯i ¡ 1) + °i¯i ¡ r = 0, i.e.

¯i =
1

¾2i

2
64¾2i
2
¡ °i §

vuut"
°i ¡ ¾2i

2

#2
+ 2r¾2i

3
75

Obviously the expression under the root sign is positive and we denote the negative

root by ¯i1 and the positive root by ¯i2, i.e. ¯i1 < 0 and ¯i2 > 0.
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In order to have Á ¯nite at Ri0 = 0 we assume that A = 0 and rewrite the

equation for Á as

Á(s;Ri0) = exp(¡rs)
h
BR¯i2

i0 +Ri0=(°i ¡ r)
i
:

We now rede¯ne this function in the following way (the parameter ~Ri0 is de¯ned

below)

Á(s;Ri0) = exp(¡rs)
h
BR¯i2

i0 +Ri0=(°i ¡ r)
i
; if 0 < Ri0 < ~Ri0

and

Á(s;Ri0) = ¡ exp(¡rs) Fi=r, if ~Ri0 · Ri0 <1:

The B and ~Ri0 are determined using the conditions that Á should be once continu-

ously di®erentiable at (s; ~Ri0). First Á(s;Ri0) should be continuous at (s; ~Ri0), which

implies the condition

B ~R¯i2

i0 + ~Ri0=(°i ¡ r) = ¡Fi=r:

Second, @Á(s;Ri0)=@Ri0 should be continuous at (s; ~Ri0), which is equivalent to

1=(°i ¡ r) + ¯i2B ~R¯i2¡1

i0 = 0:

If we solve these two equations for B and ~Ri0 we get

B = ¡
"
Fi

r
+

~Ri0

°i ¡ r

#
~R¡¯i2

i0

~Ri0 =
¯i2Fi

r

°i ¡ r

1 ¡ ¯i2
(14)

Now the conclusion of Theorem 10.18 of Oksendal (1995) states that the optimal

entry time ¿ ¤i in our original problem, i.e. the problem in (10), is given by ¿ ¤i = ¿iD,

where

¿iD = inf
n
t > 0 : Rit =2 (0; ~Ri0)

o
:

Hence, ¿¤i is the ¯rst time at which revenues exit the interval (0; ~Ri0); with ~Ri0

calculated as above. Furthermore, the maximal pro¯t in (10) is given by the function

Fi=r+ Á(0; Ri0). If Ri0 ¸ ~Ri0, then E(¿iD) = 0, immediate entry into region i is the

optimal behavior.
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We now assume that Ri0 2 (0; ~Ri0), i.e. the option to wait has a positive value

and we want to calculate E(¿iD) and understand how this quantity depends on ¾i.

Under the assumption that °i ¡ ¾2i =2 > 0 one can use Ito's Lemma to show that

E0(¿iD) = ln

"
~Ri0

Ri0

#
=
·
°i ¡ 1

2
¾2i

¸
= q(¾i). (15)

We want to study q0(¾i) assuming all other parameters ¯xed. In the Appendix we

show that

q0(¾i) =
~R

0

i0(¢)
h
°i ¡ 1

2
¾2i
i
= ~Ri0 +

h
ln ~Ri0 ¡ lnRi0

i
¾ih

°i ¡ 1

2
¾2i
i2 > 0.

We may therefore conclude that the optimal entry time into region i increases with

an increased ¾i, i.e. we have shown that if ¾1 > ¾2; then E0(¿
¤

1
) > E0(¿

¤

2
).

4. Conclusions

The model sketched in this paper applied the option value approach to model the

entry location choice within a two period and uncertainty framework. In Section 2

the value of a °exible entry location decision is compared to an immediate one. An

increased di®erence in the ¯rst period revenues decreases the option value. Also, if

the di®erence between the ¯xed costs increases the regional entry option decreases.

In Section 3 the value of the option to postpone can explicitly be calculated as

Oi =
Fi

r
¡ Ri0

r ¡ °i
[1¡ ¯¡1i2

"
Ri0

~Ri0

#¯i2¡1

]: (16)

Equation (16) is only relevant when Ri0 is less or equal to the threshold ~Ri0 > 0

explicitly given in Section 3. If Ri0 >
~Ri0 the value of the option to postpone entry

is zero. This value can be visualized, as a function of Ri0, as in Figure 1.

Oi is a strictly decreasing function of Ri0 and Ri0 = Fi(r ¡ °i)=r is the unique

initial revenue giving the Marshallian pro¯t equal to zero. If Ri0 2 (Fi(r ¡ °i)=r ,

~Ri0) then the di®erence between the OVTC and MTC pro¯t (as a function of the

initial revenue) is equal to the opportunity cost of exercise the regional entry option,

which is positive.
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Fi /r
O(Ri0)

Fi(r-γi)/r Ri0

Ri0

MTC < 0
OVTC > MTC

MTC =
 OVTC

~

σi = 0.1

σi = 0.01

Figure 1: The option value O(Ri0) versus Ri0 evaluated at two values of ¾i. In

addition, Fi = 1000; °i = 0:03 and r = 0:05.
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Appendix

We want to show that

q0(¾i) =
~R

0

i0(¾i)
h
°i ¡ 1

2
¾2i
i
= ~Ri0 +

h
ln ~Ri0 ¡ lnRi0

i
¾ih

°i ¡ 1

2
¾2i
i2 > 0.

To prove this inequality we only have to prove that ~R
0

i0(¾i) > 0, since °i¡ 1

2
¾2i > 0

and Ri0 · ~Ri0. Using equation (14) we have ~Ri0 = C0¯i2=(¯i2 ¡ 1), where C0 =

Fi(r ¡ °i)=r is a positive constant. Hence, ~R
0

i0 = ¡C0¯
0

i2=(¯i2 ¡ 1)2; i.e. the sign of

~R
0

i0(¾i) is determined by ¯
0

i2(¾i). To derive ¯
0

i2(¾i) we rewrite ¯i2 as

¯i2 =
1

2
¡ °i
¾2i

+

vuut"
1

2
¡ °i
¾2i

#2
+

2r

¾2i

and introduce ± = 1=2¡ °i=¾2i . Then ¯i2 = ± + (±2 + 2r=¾2i )
1=2 and

¯
0

i2 = ±
0

+
(2±±

0 ¡ 4r¾¡3i )

2
p
´

=
±

0

2
p
´ +

h
2±±

0 ¡ 4r¾¡3i

i
2
p
´

;

where ±
0

= 2°i=¾3i and ´ = ±2 + 2r=¾2i . We may therefore conclude that ¯
0

i2 > 0, if

and only if

2±
0p
´ > ¡2±±0

+
4r

¾3i
:

We can rewrite the inequality above as

4°i
¾3i

p
´ >

4r

¾3i
¡ 2±

"
2°i
¾3i

#
.

Equivalently

°i
p
´ > r ¡ ±°i > 0

Taking squares gives °2i ´ > (r ¡ ±°i)
2. Expanding we see that ¯

0

i2 > 0, if and only

if °i > r. But since we assume that °i < r we therefore have ¯
0

i2 < 0. Hence,

~R
0

i0(¾i) > 0 which implies that q0(¾i) > 0.
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