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Abstract

A novel method to measure bidders’ costs (valuations) in descending (as-
cending) auctions is introduced. Based on two bounded rationality con-
straints bidders’ costs (valuations) are given an imperfect measurements in-
terpretation that is robust to behavioral deviations from the traditional ra-
tionality assumptions. Theory provides no guidance as to the shape of the
cost (valuation) distributions while empirical evidence suggests them to be
positively skew. Consequently, a flexible distribution is employed in an im-
perfect measurements framework. An illustration of the proposed method
on Swedish public procurement data is provided along with a comparison
to a traditional Bayesian Nash Equilibrium approach.
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1 Introduction

This paper deals with the methodological issue of measuring bidders’ costs (val-
uations) in descending (ascending) auctions. The proposed method relies on
very few (two) economic assumptions in the form of bounded rationality con-
straints and this constitutes the primary novelty of the current paper. It is ro-
bust to deviations from the strongly rational behavior commonly assumed in
the literature, e.g., it allows for disequilibrium bidding, optimization errors and
agents that lack well-defined strategies. The methodological philosophy gathers
more inspiration from imperfect measurements in statistics and less influence
by game theory than is common in cost (valuation) estimation using auction se-
tups. Hereafter I will consider descending auctions and the estimation of costs
as opposed to ascending auctions and the estimation of valuations. This makes
the proposed method no less general as the two types of setups is the inverse of
the other.

Measuring costs is useful in the following sense. In studies of auctions (e.g.,
Paarsch, 1992; Laffont et al., 1995) one sometimes observes empirical specifica-
tions such as

c = m (X) + ε (1)

where c is a vector of costs, X contains regressors, and ε is unobserved random
heterogeneity. Often m (X) = Xβ where β is a vector of parameters. Using a
specification like (1), rather than a specification of the type b = f (X) + ν, where
b is a vector of bids, would most likely provide better empirical relationships
because in contrast to the expression for b, (1) is structural as it captures the
underlying relationship between the firm’s cost and relevant conditioning infor-
mation (Rezende, 2008); a firm’s cost reveals something about its fundamental
structure while the size of its bid may be contaminated by strategic behavior. A
complication is that, as compared to the bid, the cost is unobserved.

According to mainstream economic theory, it is the underlying structure of
the firm, essentially the production function that determines the firm’s cost.
Consider a single firm’s bid of size b and its underlying cost, c, to carry out
the contract for which it requests b. Intuitively b > c; otherwise it would not
profit from the transaction. It is plausible that the difference b− c, often called
markup, changes with respect to the institutional setting. If the structure of the
market in question is that of perfect competition then economic theory implies
that the bid perfectly represents the firm’s cost. In reality however, as compared
to theory, not many markets are perfectly competitive. This is one of the reasons
why effort has been made to estimate firms’ costs, starting with Rosse (1970) in
its modern form. Much of the research since then is based on game-theoretical
models and many results rely entirely on game-theoretical arguments grounded
on strong rationality and behavioral assumptions. While this strand of research
has provided many useful insights, the current paper adopts another approach,
mainly due to robustness arguments against violations of the traditional behav-

1



ioral rationality assumptions.
The general idea is to see the observed bids as noisy information on firms’

costs that, despite their noisiness, carry useful information. Using appropri-
ate methods to handle the noise, estimates of the latent cost variable may be
obtained; a measure of the firm’s underlying structure that is sought. This mea-
sure can then be utilized to estimate structural parameters and markups of firms.
It is a common exercise within the Empirical Industrial Organization literature
to estimate the distributions of such costs.1 In the majority of these studies the
costs are obtained using guidance from game theory. Typically, by assuming
Bayesian Nash Equilibrium (BNE) behavior one can obtain an expression for the
optimal bid. The BNE approach, however, is laden with assumptions. Most
work in the Bayesian Nash-paradigm is based on Vickrey’s (1961) auction theo-
retical contribution in conjunction with Harsanyi’s writings on strategic behavior
under imperfect competition (Harsanyi, 1967, 1968a,b). This strand of research
generated many structural econometric works on auctions in the New Empirical
Industrial Organization literature (see footnote 1) where Paarsch (1992) is con-
sidered to be the first such application and Guerre et al. (2000) perhaps the most
influential. Porter (1995), Laffont (1997) and the textbook of Paarsch and Hong
(2006) provide surveys of the research area.

The aim of the present paper is to estimate the same phenomenon, the cost,
but from a different angle relying on a small and transparent set of intuitively
appealing assumptions. The endeavor here is to provide a serious approach to
estimate costs given weak economic structure. I want to break free from the
Bayesian Nash straitjacket but still take the particular structure of auctions seri-
ously. To do this I invoke statistical methods of imperfect measurements. The
proposed method is potentially robust to the restrictive rationality assumptions
of the BNE approach. So, in a sense this paper is a novel methodological contri-
bution increasing the breadth of ways to approach and think about the problems
in estimating costs in the framework of auctions.

The outline of the paper is as follows. The next section describes the general
idea of the proposed method. Section 3 deals with the interpretation of het-
erogeneity. Section 4 provides an empirical illustration including a comparison
between the method presented in this paper and a mainstream BNE approach.
The final section concludes by discussing the content of the paper and possible
extensions of this study.

2 The General Idea

The assumptions I make are bounded rationality constraints partly inspired by
Haile and Tamer (2003)2 and entirely intuitively appealing. They are

1Two interesting texts on the method of Empirical Industrial Organization is the progress report
by Einav and Levin (2010) and the critique by Angrist and Pischke (2010).

2In addition to Haile and Tamer (2003), the spirit of Varian’s (1982; 1983; 1984; 1985) suite of
papers on a nonparametric approach to consumer and producer behavior looms over the general
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A1 The firm will not bid under its cost.

A2 Competition is an efficient sorting mechanism.

The first assumption is rather weak and straightforward; it states that b > c.
The second assumption says that no firm will allow a rival to make profit if the
firm’s cost structure allows it to beat its rival’s bid. In symbols this is stated
as c1 < b1 < c2 < b2 where the subindex specifies firm. It implies that a low-
cost firm will cast a lower bid than a high-cost firm will do, i.e. that bids are
monotone in costs. That is, the auction allocates the contract efficiently in the
economic sense of the word.

Putting the two assumptions to work, I can bound the firms’ costs into inter-
vals. To describe the procedure, index the firms by i = 1, 2, ..., N. As an example,
suppose that we observe bids of firms i = (1, 2, 3) in a given auction and that
their magnitudes can be described by

b1 < b2 < b3 (2)

That is, firm 1 is the lowest bidder and firm 3 the highest. Then, considering
assumptions A1 and A2 above, the cost of firm 1 is in the interval between zero
and its bid, that is c1 ∈ [0, b1]. Also, c2 ∈ [b1, b2] and c3 ∈ [b2, b3]. That is, the cost
of the firm is bounded from above by its bid and bounded from below by the
bid of the competitor that just underbids the firm. Consider firm 3. It is unlikely
that c3 ≥ b3 as then the firm would not profit from that transaction; this event is
ruled out by assumption A1. If c3 < b2 then it would profit from casting a lower
bid than b3 and this event is ruled out by assumption A2.

Here, as in the BNE literature, I assume that the firm knows its cost. That
is, the cost of a firm to carry out the project in a given auction, c, is determin-
istic from the viewpoint of the firm. On the other hand, c is stochastic to the
econometrician and its generating process is generally seen as

b = cu (3)

where u > 1. Hence, u can be seen as a markup-factor which is close to one if
the markup is low and larger if the markup is higher. Taking logarithms (but
skipping the ln-operator to avoid cluttering notation) and rearranging we obtain

c = b− u (4)

One reason why I take the logarithm in (4) will become clear in the next section.
Note that the ln-transformation is monotonic, so the discussion below (2) still
holds. Also, note that u > 0 holds in (4) after the ln-transformation.

Now, let us interpret the cost of a firm in an auction as an imperfectly ob-
served variable. Consider us wanting to measure firm 2’s cost of fulfilling the

idea of this paper.
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contract in a given auction. In the light of assumptions A1 and A2 as well as
the examples above, we are able to to conclude that, e.g., c2 ∈ [b1, b2]. In other
words, c2 is an interval-censored random variable. Using techniques taking the
random cost variable to be interval censored, point estimates of the firms’ costs
can be obtained along with estimates of the cumulative distribution functions
(cdf) and the probability density functions (pdf) of the costs. That is, features
that enable structural analysis in the sense discussed in the introduction can
be recovered. Naturally, this implies that one will be able to draw structural
conclusions as well.

Just as in this approach, the more traditional BNE literature provides an
expression for the cost as composed of two parts, the bid minus the markup.
The BNE type of models assume that knowing the bid and the markup will
enable the calculation of the cost as a point on the real line. The strong rationality
assumptions used in the BNE framework in conjunction with calculating the cost
as a point on the real line are potentially sensitive and prone to give erroneous
estimators if real-world behavior deviates from the model. This is why I use this
more conservative bounding approach in the spirit of Manski (1999). The BNE
approach will be described in more detail in Section 4.1, where I compare it to
the new method that I present in this paper.

So, the discussion above implies that the event (b1 < c2 < b2) is considered
when collecting information on firm 2’s cost. The probability of the event is
P (b1 < c2 < b2). Using (4) I write this as

P (b1 < c2 < b2) = P (c1 + u1 < c2 < c2 + u2) (5)

When imposing a stochastic structure on this economic framework, the model
generates u1 and u2 as independent random variables. We can see this by sub-
tracting c2 from the inequality in (5) as follows

P (u2 > 0∩ c2 − c1 > u1) = P (u2 > 0) P (c2 − c1 > u1)

which can be written in terms of the distribution functions of the random vari-
ables as

Fu1

(
c2 − c1, σ2

u1

) [
1− Fu2

(
0, σ2

u2

)]
where σ2

ui
is the variance of the distribution. So, the model assumes that markups

are independent. That is, it allows for boundedly rational behavior, such as
optimization errors that are independent across the bidders. It does not al-
low for correlatedness of, e.g., optimization error between the agents. The
independence-relation over firms’ markups is in line with earlier work in this
research area, see the surveys mentioned in the introduction of this paper.

This framework and bid data enable the researcher to obtain an estimate of
the cost of each firm in a sample, and estimate a density over each auction, a
density of the costs of all firms in all auctions, costs in different years, and so
forth. It also allows one to study a firm’s markup, that is, the general difference
between its bid and its cost and how markups differ with respect to the number
of bidders and other institutional changes.
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3 Heterogeneity and Estimation

Turning from the theoretical to the real world forces one to handle heterogene-
ity that is unobserved. How this heterogeneity manifests itself is key when the
choice of a proper way to handle it is to be made. If all auctions were homoge-
nous, a firm’s cost of delivering a service or good would not differ between
the auctions. In practice, of course, the auctions are not homogenous, but het-
erogenous. An example is that it is cheaper to provide cleaning services for one
square meter of office space than to clean one square meter of a hospital (due
to, e.g., different sanitary requirements). Therefore the firm’s cost will naturally
differ in fulfilling these contracts. Accordingly, a method to homogenize the
cost intervals with respect to contract heterogeneity would be useful. I choose
a parametric estimation framework for the estimation procedure to calculate c
in (4) from data. The major argument for assuming a parametric setting is that
in most applications, researchers face auctioned objects that are not identical
as the office/hospital case exemplifies. If the researcher observes some condi-
tioning information in the form of covariates, say X, she can homogenize the
costs with respect to the information contained in X, i.e. make the auctioned
objects more similar. The exercise of doing so is straightforward in parametric
setups. As opposed to parametric approaches, nonparametric approaches suffer
from the curse of dimensionality, i.e. that the amount of data points needed
increases exponentially in the number of covariates. If the dimensionality of X
is large and/or if X contains continuous variables this problem becomes severe;
it hinders the researcher to use the conditioning information in practice. On the
other hand, parametric estimation frameworks suffer from the inverse problem,
i.e. the observations in data are seen as indirect observations on the parameters
themselves. This makes the choice of the particular parametric model crucial
as the correct model has to be assumed at the outset (see, e.g., the excellent
discussion in Mittelhammer et al. (2000)). Hence, the more flexible parametric
specification, the better.

Empirical evidence (O’Hagan et al., 2003) suggests that costs do not seem to
be symmetrically distributed. In addition, costs assume values on the positive
part of the real line, ruling out distributions supported on (−∞, ∞). In many
studies of auctions, the log-normal distribution is chosen due to flexibility ar-
guments. In this paper I make an even more flexible parametric assumption: I
assume the costs to be log-generalized gamma distributed. This distributional
assumption includes a skewness parameter. It contains the log-normal distribu-
tion as a special case and thereby the estimation of costs is made more flexible
than in the studies utilizing the log-normal distribution. So, I want to make
use of conditioning information that is common to find in auction datasets, but
still keep some flexibility. Additionally, as the log-normal distribution is a spe-
cial case of the log-generalized gamma distribution, I can test the assumption of
log-normally distributed costs often made in other parametric studies.

Now, I describe the estimation procedure in more detail. As already dis-

5



cussed, the idea is to estimate in a regression setup and then use the predicted
costs from which observed heterogeneity has been partialed out. Then, one can
use the model to predict the expected value conditional on it being in the ob-
served interval, i.e. obtain

E [c2 | b1 < c2 < b2] (6)

The observed heterogeneity accounts for some of the variance in the de-
pendent variable, the cost. This heterogeneity is a matrix of p variates, X =(

x1, x2, . . . , xp
)

of which a row, such as xi =
(
xi1, xi2, . . . , xip

)
, i = 1, ..., N, is

observed heterogeneity associated with cost observation ci. That is, (ci, xi) is
generated by each bid and can be linked as in the following logarithmic cost
function:

cik = x′ikβ + σηik, i = 1, ..., N; k = 1, ..., K (7)

where σ and β =
(

β1, β2, . . . , βp
)′ are unknown parameters, k indicates the auc-

tion, and ηik is distributed as

f (η; λ) =


|λ|(λ−2)

λ−2

Γ(λ−2)
exp

[
λ−1η − λ−2 exp (λη)

]
, λ 6= 0

1√
2π

exp
(
− η2

2

)
, λ = 0

(8)

Here λ is an unknown parameter that determines the skewness of the density
and (8) is the pdf of the log-generalized gamma distribution. This distribution
was discussed by Prentice (1974) who discussed it in the light of the generalized
gamma distribution proposed by Stacy (1962). The density is positively skewed
whenever λ > 0, negatively skewed when λ < 0, and symmetric in case λ = 0.
This is advantageous in the light of the discussion on flexibility above. Further,
(8) includes some well-known densities as special cases: if η is on log-scale it,
e.g., includes the normal distribution when λ = 0 and the log-gamma distribu-
tion when λ > 0 and σ = 1 (Farewell and Prentice, 1977).

In this setting cik is observed up to an interval. To be consistent with earlier
notation I call the lower interval bound b1 and the upper interval bound b2. The
cost is denoted by c2. When a particular auction k is considered they are denoted
as b1k, b2k and c2k, respectively. The log-likelihood function is

ln L(θ) = ∑
i∈w

K

∑
k=1

ln Lwk
(
ηb1 , ηb2 ; θ

)
+ ∑

i∈w

K

∑
k=1

ln Lwk
(
ηb2 ; θ

)
(9)

where θ =
(
λ, σ, β′

)′, w is the set of all winning bids, w is the set of all other
bids,3 K is the total number of auctions, and

3Note that the set of winning bids, w, consists of the typical observation c1 ∈ [0, b1] (in levels,
in logs ln (c1) ∈ [−∞, ln (b1)]), i.e. left-censored random cost variables with 0 as lower bound as
the gamma distribution is supported on [0, ∞] (when c is in levels but its logarithm is supported on
[−∞, ∞]), while w, the complement of the set w contains all other observations, such as c2 ∈ [b1, b2],
i.e. interval-censored random cost variables.
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ln Lwk
(
ηb1 , ηb2 ; θ

)
=


ln
[
I
(
λ−2, ψ1

)
− I

(
λ−2, ψ2

)]
, λ > 0

ln
[
I
(
λ−2, ψ2

)
− I

(
λ−2, ψ1

)]
, λ < 0

ln
[
Φ
(
ηb2k

)
−Φ

(
ηb1k

)]
, λ = 0

(10)

where ψj = λ−2 exp
[
λ
(

ηbjk

)]
, ηbjk

=
(

bjk − x′jkβ
)

/σ and j = 1, 2. Also, Φ (·) is
the cdf of the standardized normal distribution. Further,

ln Lwk
(
ηb2 ; θ

)
=


ln
[
1− I

(
λ−2, ψ2

)]
, λ > 0

ln
[
I
(
λ−2, ψ2

)]
, λ < 0

ln
[
Φ
(
ηb2k

)]
, λ = 0

(11)

In (10) and (11), I (·) is the incomplete gamma integral, defined as

I (k, b2) =
1

Γ (k)

∫ b2

0
x(k−1)e−xdx

The log-likelihood function in (9) is maximized with respect to θ to obtain the
maximum likelihood estimator θ̂ = arg maxθ ln L(θ). Using θ̂ and observed
covariates, one can calculate the expected value of the costs given that they
are contained in the proper interval as in (6). In general, this expected value
E [c2 | b1 < c2 < b2] is defined as

E [c2 | b1 < c2 < b2] =
1

F (b2)− F (b1)

∫ b2

b1

t f (t)dt (12)

where F (·) is a cdf and f (·) the corresponding pdf. The integral in (12) can
be calculated using standard numerical methods. In the case when λ = 0 in
f (·), the natural logarithm of the costs is normally distributed and the raw cost
variable is log-normally distributed. In these two cases closed form expressions
for (12) are available and displayed in the Appendix.

When the costs have been estimated according to the procedure above, they
can be used in regression setups to empirically study the relationship between
bids and costs, i.e. expression (4). An illustration of this is provided in the
section below.

4 Empirical Illustration and Comparison to a Main-
stream Approach

The method outlined above will be applied to data on Swedish public procure-
ments and compared to a mainstream BNE approach. The data consist of 3399
bids from two datasets on fixed price cleaning service contracts auctioned be-
tween 1992-1998 and 2009-2010. I use the data to study how the price of buying
and cost of selling these services have evolved over the years when the Swedish
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Table 1: Descriptive statistics (sample size N = 3399)

Variable Mean s.d. Min Max
1. Bid (to clean one square meter over a year) 149.3 94.16 13.03 1676.4
2. Local level (YES=1, NO=0) 0.731 0.443 0.000 1.000
3. Office (YES=1, NO=0) 0.340 0.474 0.000 1.000
4. Wage (in SEK× 1000−1) 18.94 4.698 13.43 24.43
5. Length of contract (in years) 2.116 0.777 0.170 4.250
6. Option to prolong contract (YES=1, NO=1) 0.934 0.555 0.000 1.000
7. Number of bids in auction 8.335 4.771 1.000 37.00

Public Procurement Act was young as compared to more recent times. This
information will not only give an opportunity to study whether the effective
transaction price, i.e. the winning bid has changed, but also whether the cost
of providing the services has changed. This will implicitly assess whether the
market power has changed over the years allowing for interesting policy impli-
cations.

Descriptive statistics are found in Table 1. A short description of the vari-
ables follows. Bid is the size of the bid standardized to be interpretable as the
bid a firm requests to clean one square meter during a period of one year ad-
justed for inflation. Local level is a dummy variable that indicates whether the
procurement was conducted by a municipality authority or not. The third vari-
able in the table, office, indicates whether the lot to be cleaned was an office
or not. This variable describes the cost shift between offices and other types of
lots to be cleaned. It is not as costly to clean an office as compared to, e.g., a
hospital as a hospital requires more rigorous cleaning procedures. Wage is the
inflation-adjusted4 mean wage. The length of the contracts is measured in years.
A longer contract is advantageous to the firm as it does not have to participate
in new procurements as often. Option to prolong contract is whether there is a
clause in the contract that makes it possible to prolong the contract for an addi-
tional period of time without a new bidding process. If there is such an option
an incentive is provided to behave more orderly. The final variable shows how
many bids that were cast in the auction. Admittedly, some of the variables in
Table 1 are non-standard in cost-function setups. Nevertheless, it is better to use
some relevant conditioning information than none, to increase the precision of
the estimator, and even so, the variables have economic interpretation as argued
above.

The parameters of the interval log-generalized gamma regression model in
(7) are estimated, i.e., a cost function is estimated and variables two to six in
Table 1 are used as conditioning information. The likelihood is maximized using

4Reference year for the inflation adjustment is 2000 and this variable is collected from Statistics
Sweden. Wage statistics for the cleaning industry are unavailable for parts of the time period under
consideration. Instead I use information on the average wage for the cohorts that did and did not
graduate high school but was never enrolled in college or at a university.
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Table 2: Parameter estimates from model in expression (7)

Variable β̂ s.e.
Intercept 4.647 0.069
Local level (YES=1, NO=0) 0.172 0.034
Office (YES=1, NO=0) -0.314 0.028
Wage (in SEK× 1000−1) 0.010 0.003
Length of contract -0.015 0.012
Option to prolong contract (YES=1, NO=0) -0.089 0.024
σ̂ 0.508 0.007
λ̂ 0.028 0.022
N 3399
R2

pseudo 0.02
Log-likelihood 10599.98

the BFGS algorithm. Starting values are obtained by regressing the mid-points
of the intervals on the regressors using ordinary least squares and the starting
value of λ was set to zero.5 The parameter estimates are presented in Table
2. The intercept is interpreted as the firms’ fixed cost of carrying out a project.
A positive (negative) β̂ reveals a positive (negative) effect of the corresponding
variable on the firms’ costs. The parameter estimates in the mean function are
all signed as expected, e.g., higher wages lead to larger costs and it is less costly
to clean offices as compared to other objects. The λ̂ is not different from zero
in a statistical significance sense. As logged bids are utilized in (9) this implies
that I cannot reject that the logged costs are normally distributed. Hence, I
cannot reject that the costs measured in levels are log-normally distributed. The
pseudo-R2 in Table 2 is defined in McFadden (1974) and calculated as follows:
Let ln L(θ) denote the log-likelihood function being maximized, ln L0(θ) and
ln L f it(θ) its value in the intercept-only model and the fitted model, respectively.
Then

R2
pseudo = 1−

ln L f it(θ)

ln L0(θ)

Moreover, a likelihood ratio-test rejects, on the five percent significance level the
null hypothesis that the parameters in the fitted model are jointly equal to zero.

The idea is to use the predicted values of the estimated model as the cost es-
timates, given that these predicted costs are contained in the proper intervals, as
in (12).6 The result from this exercise is visualized in Figure 1 where we observe

5In addition I tried 1 as starting value for λ but λ̂ differed only on the third decimal when doing
so.

6As λ̂ = 0.028 I used the normal distribution when we estimated the conditional mean in (12).
The reason is that the pdf of the log-generalized gamma distribution contains the number Γ

(
λ−2)

which is extremely large when λ = 0.028, in fact it is so large that it cannot be handled by most
computer programs. As an example, the software R that is used for estimations in this paper, can
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Figure 1: Bid (solid) and cost (hatched) distributions. Note: bids and costs in levels as
in Table 3.

the intuitive result that the bids dominate the costs stochastically. Summary
statistics of bids and predicted costs across years are given in Table 3.

Now, I use the predicted costs to study expression (4) empirically, i.e. I
estimate the parameters in

bik = αĉik + uik + z′ikγ, i = 1, ..., N; k = 1, ..., K (13)

where ĉik is the predicted cost of firm i in auction k, α is the effect of the predicted
cost on the bid, zik is a vector of strategic variables and γ their effect on the bid.
The zik may contain information that is assumed to influence the size of the
firm’s bid via its strategic behavior but not through its cost per se, such as a
measure of competition in the auction. The uik = µ + ξik is the markup and
uik > 0 (in logs and uik > 1 in levels) according to Section 2.

Table 4 displays ordinary least squares estimates of the parameters in speci-
fication (13). Note that the estimates are generated by a model where both bids

at the very least handle a value of λ approximately equal to 0.080, that is Γ
(
0.080−2) which is

approximately equal to 1.692× 10274.
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Table 3: Bids and estimated costs across years

Year Median bid Median cost Mean bid Mean cost
1992 92.749 64.595 116.324 90.957
1993 156.089 136.011 208.204 184.453
1994 141.612 126.292 153.960 139.724
1995 140.728 129.305 159.494 145.610
1996 140.476 124.509 159.020 145.546
1997 185.514 151.777 210.203 178.939
1998 117.542 109.215 147.277 126.907
2009/1 109.627 101.948 115.494 105.638
2009/2 119.783 107.694 129.069 116.993
2010/1 108.091 99.805 114.371 103.338
2010/2 112.733 101.931 157.709 134.225

Note: 2009/1 means January-June 2009 and 2009/2 July-December 2009. Interpretable as the
bid/cost to clean one square meter during one year.

and costs are measured in natural logarithms (as in expression (4) in Section
2). We see that the parameter estimates of α vary from 0.898 to 1.058 over the
years. A parameter estimate of 0.898 indicates that a one percent increase in cost
for a certain contract will lead to an approximately 0.9 percent increase in the
firm’s bid in that year. That is, here the firms’ markups decrease when their
costs increase.

Figure 2 shows a picture of the estimated markups, ûik, using the full sample.
The ûik in Figure 2 are associated to bids and costs measured in levels, and we see
that all ûik are larger than one, as the simple model (3) requires. The observation
that all ûik > 1 illustrates that the parametric approximations correspond well
to the model (3). Descriptive statistics relating to Figure 2 are found in Table 5
below in the IAI column.

Also, the γ̂ is the magnitude of the effect that one additional bid in an auction
has on the bid.

All in all, I conclude that there is no obvious trend in the markup over the
years in the data at hand.

4.1 Comparison to a Mainstream Bayesian Nash Equilibrium
Approach

Now, I provide a comparison of my proposed method to the common proce-
dure proposed by Guerre et al. (2000). Their proposition has its foundations
on a BNE assumption which restricts behavior to error-free equilibrium rational
behavior as was discussed in the introduction. Given the BNE assumption it is
very flexible as it is nonparametric in an econometric sense. But this is also a
drawback as observed heterogeneity cannot be used in other than very limited
ways, due to the curse of dimensionality. Another drawback of their approach

11



Table 4: Parameter estimates from model in expression (13). Note: bids and
costs in natural logarithms

Year Intercept s.e. α̂ s.e. γ̂ s.e.
1992 -0.112 0.343 1.058 0.054 0.018 0.079
1993 0.557 0.150 0.898 0.035 0.020 0.015
1994 0.416 0.061 0.946 0.014 -0.007 0.003
1995 0.445 0.038 0.946 0.008 -0.010 0.001
1996 0.369 0.055 0.961 0.011 -0.010 0.002
1997 0.945 0.203 0.940 0.034 -0.079 0.016
1998 0.675 0.200 0.940 0.035 -0.059 0.020
2009/1 0.549 0.083 0.916 0.019 -0.008 0.002
2009/2 0.463 0.087 0.932 0.018 -0.004 0.001
2010/1 0.580 0.065 0.911 0.014 -0.008 0.001
2010/2 0.600 0.083 0.931 0.016 -0.018 0.003

Note: 2009/1 means January-June 2009 and 2009/2 July-December 2009.

as compared to mine is that their estimation procedure requires the researcher to
supply information on the number of competitors. In many cases the question
on how many competitiors the bidders observe is dubious. That is, it is not clear
to the econometrician how many firms the bidders see as a real threat: if not
all firms participate, it is unclear whether it is the potential or the actual num-
ber of bidders that firms’ see as competition as I discuss elsewhere (Sundström,
2016). Nevertheless, according to a BNE analysis where agents play monotone
strategies, the optimal bid of firm i is

bi = ci +
[1− G (bi)]

g(bi)

1
N − 1

(14)

where the second term on the right hand side is the markup and G (·) and g (·)
denote the cdf and pdf of the bids, respectively. Guerre et. al (2000) suggests sub-
stituting the nonparametric estimators Ĝ (·) and ĝ (·) for G (·) and g (·) in (14).
As Ĝ (·) and ĝ (·) are nonparametric, a choice of bandwidth must be supplied
to the estimation procedure. The N is the degree of competition where some
measurement of competition must be used, e.g., either the potential or actual
number of competitors depending on assumptions and available measurements.
Here I choose N to be the number of received bids, i.e. the actual number of bids.
To calculate ĝ (·) I use the Triweight kernel, (35/32)

(
1− z2)3

1 (| z |< 1), whose
bandwidth is chosen as h = 1.06σ̂b (M)−1/5 where σ̂b is the sample standard
deviation of the bids and M the sample size. These choices of kernel and band-
width are the same as in the Monte Carlo experiments of Guerre et. al (2000).
Here, ĥ = 19.63. Some observations drop out due to the trimming procedure to
make the estimator ĝ (·) unbiased in the tails as described by Guerre et. al (2000).
In total, a number of 7 observations drop out, effectively reducing the sample
size from 3399 to 3392 observations. Table 5 provides descriptives of the esti-
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Figure 2: Density of the estimated multiplicative factors ûik for the full sample cor-
responding to u in expression (3). The horizontal axis shows the size of u, i.e. the
multiplicative factor on the cost. The horizontal axis is truncated to make the exposition
clearer, but there are only 20 ûik > 3, and max ûik = 8.9.

mated costs, ĉik and estimated markup factors, ûik, for the full sample using the
method described in this paper (IAI) and the method proposed by Guerre et al.
(2000) (GPV), respectively. In the table we see that they differ quite substantially.
We also see that the GPV approach generates very small multiplicative markups.
Further, we observe that the GPV method yields a mean of the estimated costs
equal to 149.2 while the mean of the bids is 149.9. On the other hand, the mean
estimated cost is 133.8 according to the approach proposed in this paper.

I also test whether the predicted costs differ in a distributional sense. Here I
perform two sample Kolmogorov-Smirnov tests of equality of the distributions
of ĉik as well as the ûik estimated in the IAI and GPV frameworks, respectively.
The null hypothesis is that the distributions are equal. The Kolmogorov-Smirnov
test statistic considers the maximum absolute difference of the empirical cdf of
the IAI and GPV cost estimates, respectively, as D = maxĉ | F̂IAI (ĉ)− F̂GPV (ĉ) |
and analogously for û. As can be seen in Table 5 the null hypothesis is rejected
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Table 5: Comparison between estimated costs and markup factors using the
method studied in this paper (IAI) and Guerre et. al (GPV)

ĉik ûik

Statistic IAI GPV IAI GPV Bids
Mean 133.815 149.241 1.572 1.011 149.280
Median 112.475 124.861 1.488 1.010 124.823
s.d. 79.503 94.164 0.322 0.008 94.164
Min 11.841 10.134 1.252 1.009 13.031
Max 769.436 1676.427 8.917 1.425 1676.427

Kolmogorov-
Smirnov test ĉik ûik

D̂ 0.093 0.999
p-value 2.3× 10−13 < 2.2× 10−16

Sample size 3399 3392 3399 3392 3399
Note: The descriptives of the bids are given here for convenience. They were given earlier in Table 1.
The sample size for the GPV statistics is smaller because of the trimming of the extreme observations
in the GPV procedure.

in both the cost- and the markup distributions.7 Further, considering Table 5 we
see that the mean multiplicative markup factor is 1.57 calculated using the IAI
approach and 1.011 using the GPV approach.

To summarize the main differences between the two approaches we see that
in the approach suggested by Guerre et al. (2000), one has to make two choices:
kernel8 and bandwidth. As it is nonparametric there is a problem with respect
to the curse of dimensionality. On the other hand, misspecifications due to para-
metric assumptions is not an issue. In the approach suggested in this paper I
can use conditioning information in a straightforward way as this is a parametric
approach and it does not suffer from the dimensionality curse. That being said,
imposing a parametric structure is always restrictive as compared to a nonpara-
metric alternative. However, the log-generalized gamma parametric setup used
here enjoys more flexibility than what is common in most parametric auction
setups.

5 Concluding Remarks

In this paper, I have discussed a novel approach to extract information about
bidders’ costs (and valuations) in auctions. It is novel in the sense that it im-

7I also conducted Kolmogorov-Smirnov tests on the equality of distributions between the actual
bids and the estimated cost distributions under the IAI and GPV frameworks, respectively. I re-
ject that the bids and costs estimated in the IAI framework share the same distribution (p-value
1.9× 10−13) while I cannot reject the bids and costs estimated in the GPV framework are equally
distributed (p-value 1).

8I also tried the Epanechnikov kernel and, as expected, the results did not change much.
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poses only minimal economic structure in the form of two bounded rationality
constraints. This makes the proposal robust to disequilibrium behavior, opti-
mization errors and play in strategies that are not well-defined. The estimated
costs allow the applied researcher to perform structural analyzes in auction set-
tings, i.e. to study how different market characteristics influence unobserved
phenomena such as the bidders’ costs and markups. Conditional on the intu-
itively appealing assumptions, a latent variable interpretation of bidders’ costs
in the form of an interval censored random variable was given. Also, costs may
be asymmetrically distributed. Therefore, a log-generalized gamma maximum
likelihood estimator for interval censored data was proposed to make the proce-
dure robust to and enabling tests for deviations from symmetry.

I detached from the traditional approach to empirically assess auctions when
I separated from the traditional research domain of the Bayesian Nash-paradigm.
Bayesian Nash analysis has contributed substantially to the understanding of
auctions, but may not be very robust to behavioral departures from the strong
rationality assumptions on the agents that it presumes. The assumptions made
in this paper, that (1) no one bids above their cost and that (2) competition is an
efficient sorting mechanism, impose less structure on bidders’ behavior and are
more robust to, e.g., disequilibrium play and optimization errors made by the
economic agents.

Conditional on the two assumptions, bidders’ costs were given an interval
censored random variable interpretation. Using this interpretation, the rest of
the estimation philosophy was parametric, albeit a robust one thanks to the flex-
ible properties of the log-generalized gamma distribution. The parametric max-
imum likelihood approach is motivated as there are observed heterogeneities
that should be conditioned on. Some recent estimation methods of auctions re-
lies on nonparametric techniques. Such nonparametric techniques suffer from
the curse of dimensionality as the need for data points increases exponentially
in the number of covariates that is utilized. This is unfortunate as most data sets
on auctions consist of a quite small number of observations, and a fair amount
of conditioning variables.

The illustration on Swedish public procurement data showed that there is
no trend in the evolution of firms’ markup over years since the Public Procure-
ment Act was implemented. The distribution of costs in this particular dataset
was skewed to the right, but I could not reject that its natural logarithm was
symmetrically distributed. This can be seen in Figure 1 and also be deduced
from the estimate λ̂ = 0.028 along with its standard error (0.022) in Table 2 and
implies that it cannot be rejected that the raw cost variable is log-normally dis-
tributed. In this case the standard procedure of interval regression as proposed
by Stewart (1983) (that is based on a normality assumption) could have been
utilized with logged bids. However, this may not be true for other data and the
log-generalized gamma approach is well motivated by robustness arguments.
Also, the test of log-normality was enabled by this approach.

Further, the method introduced in the current paper is easily implemented
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as it basically requires (1) the maximization of a likelihood function, (2) predic-
tion using the estimated model obtained in (1) and (3) using estimated costs in
other inquiries. Sometimes, obtaining the costs is the objective and then (3) is
superfluous. The main advantage is, however, that the economic model forming
the foundation of the method is easily understood by practitioners, for whom
this method is designed.

The comparison of the method discussed in this paper to a traditional BNE
approach as suggested by Guerre et al. (2000) showed that the mean markup
factors were 1.572 and 1.01, respectively, which reveals quite a wide difference
in results. This discrepancy opens up for interesting discussions about models
and data generating processes in general. Say that the assumptions A1 and A2
of Section 2 generally holds, and further that (14) actually accurately describes
the behavior of at least a subset of the economic agents. Can we determine that
a certain subset of the economic agents that adheres to the decision rule (14), i.e.
agents whose behavior can be described by rational equilbrium play? If so, can
we increase the precision in cost estimation by using a combination of the model
outlined in Section 2 and the specification in (14)? These are questions that are
interesting on a both philosophical and practical level that deserve attention in
future studies.
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Appendix: The Expected Value in Two Truncated Dis-
tributions

In the case of the normal distribution, that is when λ = 0 in (8), the expected
value in (12) can be shown to be

E [c2 | b1 < c2 < b2] = c2 − σ

[
φ (b2)− φ (b1)

Φ (b2)−Φ (b1)

]
where Φ (·) and φ (·) is the cdf and the pdf of a standardized normal random
variable, respectively. When we consider the log-normal distribution (12) is

E [c2 | b1 < c2 < b2] = exp
(

c2 +
σ2

2

) [
Φ (b2 − σ)−Φ (b1 − σ)

Φ (b2)−Φ (b1)

]
(A.1)

I use (A.1) in the empirical illustration of Section 4.
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