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Abstract

This note defines the asymmetric count data, first order moving average model and gives
some of its basic properties. A brief account of conditional least squares estimation of
unknown parameters is also given.
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This note gives some basic results for the integer-valued or count data time series model
corresponding to Wecker’s (1981) asymmetric moving average (asMA) model for continuous
variables. Wecker’s model has in the asMA(1) case the form yt = ut + θ+u+

t−1 + θ−u−t−1, with
u+ = max(0, u) and u− = min(u, 0). Hence, differently signed shocks may have different
effects on yt. We may alternatively write the model as yt = ut + θ−ut−1 + (θ+ − θ−)It−1ut−1,
where It−1 = I(ut−1 > 0) is the indicator or Heaviside function taking value 1 when the
argument is true and 0 otherwise.

The basic count data MA or INMA model and its interpretation and extensions have been
discussed by Al-Osh and Alzaid (1988), McKenzie (1988), Brännäs and Hall (2001) and others.
In this model, multiplication is replaced by a thinning operation in order to generate integers.
For asymmetry in the sense of Wecker the threshold of 0 in the indicator function of the
asMA(1) model needs to be replaced by some k > 0 since ut ≥ 0 for every t, in the count data
setting.

We first consider the first order asymmetric integer-valued moving average or asINMA(1)
model and briefly discuss two alternative specifications. We also briefly discuss the least
squares estimation of unknown model parameters.
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1 Model and Properties

The most obvious way of formulating the count data, asymmetric MA(1) or asINMA(1) model
is as

yt = ut + θ+ ◦ It−1ut−1 + θ− ◦ (1− It−1) ut−1, t = 1, 2, . . . , T (1)

where It−1 = I(ut−1 > k) is the indicator function. In (1), {ut ≥ 0} is a sequence of i.i.d.
integer-valued random variables. The discussion is based on a Poisson assumption for ut.
Hence, we assume E(ut) = V(ut) = λ. The binomial thinning operations are defined as
θ ◦ u = ∑u

i=1 vi, where {vi} is a sequence of i.i.d. 0-1 random variables, with Pr(vi = 1) =

θ = 1 − Pr(vi = 0). The random u is assumed independent of {vi}. In addition, thinning
operations over time are independent. The parameters of the asINMA model are probabilities
and naturally restricted to [0, 1] intervals. When It−1 = 0, there is a positive thinning proba-
bility for It−1ut−1 = 0. With θ+ = θ− = θ the model reduces to a standard INMA(1) model
yt = ut + θ ◦ ut−1.

The conditional expectation of (1) is

E(yt|Yt−1) = λ + θ−ut−1 + δIt−1ut−1, (2)

where δ = θ+ − θ−, and Yt−1 is the observed information up to and including time t − 1.
Unconditionally we get

E(yt) = λ + θ−λ + δ(λ− e1), (3)

where e1 is obtained from em = ∑k
i=0 imλie−λ/i! with m = 1 in the Poisson case (cf. the

Appendix for additional details). If k → 0, e1 tends to zero and then (3) corresponds to an
INMA(1) model with parameter θ+. As k → ∞, e1 tends to λ and now the limiting model is
an INMA(1) with parameter θ−.

The conditional and unconditional variances are

V(yt|Yt−1) = λ + δIt−1ut−1 − κ It−1ut−1 + θ−(1− θ−)ut−1 (4)

V(yt) = λ + θ−(1− θ−)λ + (δ + θ−
2
)λ− (δ + κ + 2δθ+λ)e1 − δ2e2

1 − κe2, (5)

where κ = θ+
2 − θ−

2
The conditional variance also varies asymmetrically with respect to

lagged ut−1, while for INMA there is no asymmetry. The first order autocovariance is

Cov(ytyt−1) = λ2 + 2θ+λ− δ(λe1 + e2) + (θ+λ− δe1)
2 − E2(yt)

= λ
[
2θ+(1− λ)− δe2

]
(6)

and the autocorrelations for all higher order lags equal zero.
Next, we consider the dual autoregressive representation of the asINMA(1) in (1). At t = 1

and given u0 = 0, y1 = u1 and then y2 = u2 + θ+ ◦ I1y1 + θ− ◦ (1− I1)y1, where equality is in
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Table 1: Parameter values and probabilities for the first three lags in the dual autoregression
of an asINMA(1) model at t = 4 with θ+ = 0.8 and θ− = 0.4 and probabilities p = Pr(It =

1) = 0.75 and 1− p = 0.25.

Lag Values/Probabilities Expectation

1 0.8 0.4
0.75 0.25 0.70

2 0.64 0.16 0.32

0.563 0.063 0.375 0.49

3 0.512 0.064 0.256 0.128

0.422 0.016 0.422 0.141 0.34

distribution. For t = 4 we give the expression in terms of expectations

E(y4) = λ + θ+E(I3y3) + θ−E( Ī3y3) (7)

−θ+
2
E(I3 I2y2)− θ−

2
E( Ī3 Ī2y2)− θ−θ+E( Ī3 I2y2)− θ+θ−E(I3 Ī2y2)

+θ+
3
E(I3 I2 I1y1) + θ−

3
E( Ī3 Ī2 Ī1y1)

+θ+
2
θ−E(I3 I2 Ī1y1) + θ+

2
θ−E(I3 Ī2 I1y1) + θ+

2
θ−E( Ī3 I2 I1y1)

+θ+θ−
2
E(I3 Ī2 Ī1y1) + θ+θ−

2
E( Ī3 I2 Ī1y1) + θ+θ−

2
E( Ī3 Ī2 I1y1)

where Īj = 1− Ij. Depending on the outcomes of u1, u2 and u3 there is in this t = 4 case 23

different autoregressive models. For instance, for all It = 1 we get y4 = u4 + θ+ ◦ y3 − θ+
2 ◦

y2 + θ+
3 ◦ y1, while for only u2 ≤ k, y4 = u4 + θ+ ◦ y3 − θ+θ− ◦ y2 + θ+

2
θ− ◦ y1.

The parameters in (7) arise with binomial probabilities Pr(j) = [m!/(j!(m− j)!)] pj(1 −
p)m−j where m is the lag and j = 0, ..., m. The number of possible parameter values increases
with the lag but the associated probabilities get smaller at a fast rate if both θ+ and θ− are
smaller than one. Note also that the parameters at even lags have negative signs. The expected
value at lag m is given by ∑m

j=0 Pr(j)(θ+)j(θ−)m−j. Table 1 gives an example. Related results
for the extension of the asMA(1) model are considered by Brännäs and Ohlsson (1999).

Since θ+ and θ− are both in [0, 1] intervals, we conjecture that for a stationary dual AR
model to exist, at least, one of the θ’s needs to be smaller than one, subject also to Pr(It =

1) ∈ (0, 1). When this is the case we say that the asINMA(1) is invertible. De Gooijer and
Brännäs (1995) found that for a conventional asMA(1) model |θ+||θ−| < 1 is a necessary
condition, using a numerical invertibility approach and assuming normality. This approach
gives a larger invertibility region than the originally proposed |θ+| < 1 and |θ−| < 1 region of
Wecker (1981).

An alternative model specification to (1) is

yt = ut + θ+ It−1 ◦ ut−1 + θ− (1− It−1) ◦ ut−1. t = 1, 2, . . . , T (8)
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The indicator variable effectively switches the probabilities θ+ and θ− to zero depending on
the outcome of the discrete ut−1 variable. The model can be said to be a special case of a
random coefficient INMA(1) model. In model (8) we have thinning θ I ◦ u = ∑u

i=1 wi, with
wi = 1 if vi = 1 and I = 1 and wi = 0 otherwise, so that Pr(wi = 1) = θp with p = Pr(I = 1).
In (1), the thinning is θ ◦ Iu = θ ◦ u for I = 1 and equal to zero otherwise. Practically, there
appears to be little difference between the two model versions, but it remains to study whether
the thinning operations are different or equal.

The probability generating function of x0 = θ ◦ u conditional on u is P0(t|u) = E(tx|u) =
[θt + (1− θ)]u which corresponds to the binomial distribution and unconditionally P0(t) =

E(tx) = exp[λθ(t − 1)], which tells us that x0 is Poisson distributed with mean λθ. For the
standard INMA(1) model we then obtain the generating function for yt as Py(t) = exp[λ(1 +
θ)(t− 1)], which again corresponds to a Poisson distribution.

Using E(tx) = E(tx|u, I = 0)Pr(u ≤ k) + E(tx|u, I = 1)Pr(u > k) we find for the thinning
operation in (1), i.e. x1 = θ ◦ Iu, and for the x2 = θ I ◦ u of (8) that P1(t) = E(tx1) = (1− p) +
pE(tx1 |u > k) = P2(t) = E(tx2). From this follows equality in distribution for the thinning
operations and then also for the unconditional distributions of yt in (1) and (8).

Obviously, the indicator function I(ut > k) has a key role in the model. If we were willing
to consider an alternative such as I′(xt > k) = I′t for some exogenous or predetermined
variable xt (independent of ut) , moment results would be easy to obtain. For instance, the
expected value is then E(yt) = λ + θ+ I′tλ + θ−(1− I′t)λ.

2 Estimating k

In the preceding discussion k was viewed as a known positive integer or real value. For
empirical purposes we recognize that k will be unknown in most instances. We consider two
approaches to estimation, both based on the conditional least squares estimator. In the first,
we estimate the other parameters ψ1 = (θ+, θ−, λ)′ for any given k. The estimated value of
k is next determined by AIC, SBIC or some other related criterion. In the second approach,
we view k as a real positive but unknown parameter, so that the vector to be estimated is
ψ2 = (θ+, θ−, λ, k)′. We may approximate the indicator function I(u > k) by say a distribution
function centered at the unknown k. A simple choice is the logistic distribution function, i.e.
I ≈ 1− 1/[1 + exp(−c(u− k))], where c is some large and given value. To reduce the number
of unknowns we could consider setting k = λ so that ψ3 = (θ+, θ−, λ)′ and with I a function
of λ.

The one-step-ahead prediction error

zt = yt − λ− θ−ut−1 − δIt−1ut−1 (9)

is real valued and related to ut in the sense that zt + λ has the same conditional and uncondi-
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tional first and second moments as ut. Using the relationship to zt we calculate ut sequentially.
This leap is also employed in Brännäs and Hall (2001).

Given this, the easiest general approach to estimation which is also robust towards both
distributional misspecification and alternative forms of dependence among thinning opera-
tions (cf. Brännäs and Hall, 2001) is the conditional least squares estimator based on (9). Hence,
the parameter vectors ψi, i = 1, 2, 3 minimize the least squares criterion function S = ∑T

t z2
t ,

where zt is the prediction error. The conditional least squares estimator for this different mov-
ing average model differs from the conventional one with respect to the E(ut) 6= 0 and k. The
derivatives with respect to the parameters are:

∂zt

∂θ+
=

∂ut

∂θ+
= −It−1ut−1 − θ−

ut−1

∂θ+
− δ

[
∂It−1

∂θ+
ut−1 + It−1

∂ut−1

∂θ+

]
∂zt

∂θ−
=

∂ut

∂θ−
= −ut−1 + It−1ut−1 − θ−

∂ut−1

∂θ−
− δ

[
∂It−1

∂θ−
ut−1 + It−1

∂ut−1

∂θ−

]
∂zt

∂λ
=

∂ut

∂λ
− 1 = −1− θ−

∂ut−1

∂λ
− δ

[
∂It−1

∂λ
ut−1 + It−1

∂ut−1

∂k

]
∂zt

∂k
=

∂ut

∂k
= −θ−

∂ut−1

∂k
− δ

[
∂It−1

∂k
ut−1 + It−1

∂ut−1

∂λ

]
which can all be calculated recursively from zero initial values.

For the covariance matrix of the parameter vector ψ̂′i we advocate a sandwich estimator
that is robust against both violations in assumptions about thinning operations as well as
conditional heteroskedasticity. Its form is

Cov(ψ̂′) = F−1 JF−1,

where

F =
T

∑
t=2

∂zt

∂ψ

∂zt

∂ψ′
and J =

T

∑
t=2

z2
t

∂zt

∂ψ

∂zt

∂ψ′
.

3 Discussion

The note has focused on the simplest of asymmetric integer-valued or count data moving
average models. For continuous variables, the basic asMA model has been extended in par-
ticular for financial time series to capture asymmetries in both returns and volatilities as well
simultaneity for multiple time series. Extending the current study to cover longer INMA lag
structures and an INAR part appears tractable. If one wishes to include additional flexibility
in conditional heteroskedasticity/variance the direct approach would be to relax the Poisson
assumption about ut and replace it with σtut such that this has conditional variance σ2

t which
modelwise could borrow from the GARCH literature.
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Appendix

The density of Itut is left censored such that the outcome zero is observed when ut ≤ k with probability
1− p = Pr(u ≤ k) = ∑k

i=0 pi. Hence, the expected value is (1− p)× 0 + p ∑∞
i=k+1 ipi/p = λ− e1. The

density of (1− It)ut is right censored such that all ut ≤ k outcomes are observed while for ut > k
only zeroes are observed. With the censoring value being zero the probability for the zero outcome is
increased by the probability for ut > k, i.e. p0 + p. There will be no impact on expected values em, since
∑k

i=0 im pi = ∑k
i=1 im pi for any k.

For the thinning operation θ ◦ (1 − I)u the expected value is obtained from E(θ ◦ (1 − I)u) =

E(θ ◦ (1 − I)u|I = 0)Pr(I = 0) + E(θ ◦ (1 − I)u|I = 1)Pr(I = 1). Here, E(θ ◦ (1 − I)u|I = 0) =

E(∑u
i=1 vi|I = 0) = θE(u|u ≤ k) = θ(1− p)−1 ∑k

i=1 ipi = θ(1− p)−1e1. Conditioning on I = 1 instead
gives conditional expectation equal to zero. For E(θ ◦ Iu|I = 1) we get θp−1(λ− e1), and E(θ ◦ Iu|I =
0) = 0. It follows that E(yt) = λ + θ+(λ− e1) + θ−e1 = λ + θ+λ− (θ+ − θ−)e1

The variance is obtained using

E [V(yt|Yt−1)] = λ + θ−(1− θ−)λ +
[
δ−

(
θ+

2 − θ−
2
)]

(λ− e1)

V [E(yt|Yt−1)] = λ
[
θ+

2
+ 2δθ+e1

]
− δ2

[
e2 + e2

1

]
− 2θ−δe2,

where em = ∑k
i=0 im pi. Then V(yt) = E [V(yt|Yt−1)] + V [E(yt|Yt−1)].

The autocovariance function at lag 1 is

E(ytyt−1) = E
[
ut + θ+ It−1 ◦ ut−1 + θ− ◦ ut−1 − θ− It−1 ◦ ut−1

]
×
[
ut−1 + θ+ It−2 ◦ ut−2 + θ− ◦ ut−2 − θ− It−2 ◦ ut−2

]
= λ2 + 2θ+λ− δ(λe1 + e2) + (θ+λ− δe1)

2.
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