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1 Introduction

In this paper we address the question of how to properly assess the risk in large financial
portfolios. In risk assessment it is usually assumed that the entire position can be sold at
the market price (or mid-price), though one realizes that this can be a quite misleading
valuation approach. The reason is that for large enough positions the seller (buyer) of
an asset does not face a horizontal demand (supply) curve. Thus, there is an element
of liquidity risk involved (see Malz, 2003, for a general discussion of liquidity risk) and
this should reasonably be taken into account in risk assessment.

Here, the primary focus is on incorporating the liquidity risk in the Value at Risk
(V aR) measure, which is the standard way of quantifying the risk of adverse price
movements. V aR is defined as the maximum potential portfolio loss that will not be
exceeded over a given time horizon for some small probability (see Jorion, 2007, for a
survey). We emphasize, as argued by François-Heude and Van Wynendaele (2001) and
others, that it is implicitly assumed that the liquidation occurs in one block at the end
of the predefined holding period when calculating the V aR. The question of how to
incorporate the liquidity risk into the V aR is a relatively old one and several alternative
approaches have been proposed. Bangia, Diebold, Schuermann, and Stroughair (1999)
were the first to account for it, with their spread based alternative. Ernst, Stange, and
Kaserer (2009) evaluates some measures empirically.

Our proposed approach relies on essentially the same idea as in Giot and Grammig
(2006) (GG hereafter). Rather than the mid-price at the end of the horizon they consider
the average price per share that would be obtained upon immediate liquidation. Their
V aR is volume dependent and it is based on the difference between the mid-price at
the beginning of the horizon and the average price at the end of it. We argue that the
relevant initial price is not the mid-price, but that the portfolio should be valued at the
average price in the beginning of the period as well. We have assets traded on an order
driven markets with a visible limit order book (LOB) (e.g., Gourieroux and Jasiak, 2001,
ch. 14) in mind and the context is intra-day. Though frequently used on a (at least)
daily basis, intra-day V aR’s are of interest as well. For example, Dionne, Duchesne, and
Pacurar (2008) argue that the investment horizon for very active agents on the market
is typically less then one day.

When it comes to the modelling of the dynamics of the average prices the literature
is quite scarce. The model employed in GG is of AR-GARCH type and it is essentially
univariate. Other previous attempts include Gourieroux, Le Fol, and Meyer (1998) and
Bowsher (2004). The former consider a factor model in transaction time, while the latter
proposes a functional signal plus noise time series model in calender time. Our framework
shares features with all three approaches and the resulting multivariate model allows for
spatial (in the volume dimension) as well as serial correlation in the time dimension.

The paper is organized as follows. In Section 2 our V aR framework is presented.
Section 3 gives some descriptive statistics of our data set consisting of high-frequency
observations on the limit order book of Swedish banking stocks. In Section 4 we propose
a time series model for the dynamics of the limit order book. Section 5 contains some
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empirical results including a comparison with the competing approach of GG.

2 The Liquidity adjusted VaR

The object of interest is the conditional V aR for the horizon T to T +h for a univariate
portfolio consisting of vT shares of a financial asset. We will consider V aR’s for both long
and short portfolios. For the latter we borrow shares today and agree to return them
at some future date. Thus, in that case vT is negative. We do not allow for portfolio
updating, so that vT = vT+i, i = 1, ..., h, and we denote the value of the portfolio at
time point t = T, ..., T + h by Vt. Following (Gourieroux and Jasiak, 2001, ch. 16) the
V aR for the position vT satisfies

Pr{VT+h − VT < −V aR1−αT,h | FT} = α, (1)

where FT is the information available at time T . That is, with the (small) probability α
the change in the value of the portfolio is less than −V aR1−αT,h . In anticipation of what
follows we note that the V aR depends on how we compute the values VT+h and VT . The
approach typically adopted in the literature is to assume that the entire portfolio can
be sold at one and the same price, e.g., the mid-price, P̃t, t = T, ..., T + h (say). This
implies that the portfolio values VT and VT+h in (1) are approximated by ṼT = P̃T vT
and ṼT+h = P̃T+hvT , respectively. The corresponding approximative V aR for a long
position then satisfies

Pr{ṼT+h − ṼT < −]V aR
1−α
T,h | FT} =

Pr{(P̃T+h − P̃T )vT < −]V aR
1−α
T,h | FT}. (2)

For a short position the expression becomes Pr[(P̃T+h − P̃T )vT > ]V aR
1−α
T,h | FT ]. The

discussion below is for a long position, but it applies analogously for a short one. Now,
for relatively small positions we expect the V aR as defined by (2) to provide a reasonable
approximation. However, as argued in the introduction ṼT does not in general give the
correct value of the portfolio. For example, assume that our position consists of 1000
shares and that at time T + h, 500 shares are demanded at the price 2 at the first
level of the bid-side of the LOB, and that 1000 shares are demanded at price 1 at the
second level. Whereas a marking to the mid-price approach would assign a value of, at
least, 2000 we would actually obtain 500× 2+ (1000− 500)× 1 = 1500 upon immediate
liquidation. The average price per unit of sold volume for this transaction is 1.5 and it
appears that this is the fair price to replace for P̃T+h in (2).

Generalizing, we define P̄t(v) as the average price as a function of the volume, i.e.
the average price per unit of volume that would result from immediately executing a
market order of v shares. In the sequel we let superscripts a and b indicate whether
the average price is for the ask or the bid side of the LOB. Figure 1 shows demand and
supply schedules along with the corresponding average price curves for an observation
of one of the stocks (SWB) in our data set.
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Figure 1: Supply and demand schedules (left) and average price curves (right) in SWB,
August 1 at 10AM.

The question is then how to properly use P̄t(v) to compute the relevant change in
value and this is where we differ from GG. They consider a one-period setting and in their
view the relevant change in the value of a position of size vT is given by P̄ b

T+1(vT )vT −
P̃T vT , where P̃T =

£
P̄ a
T (1) + P̄ b

T (1)
¤
/2. They specify the dynamics of the log-returns,

pGG,vt = ln(P̄t(vT )/P̃t−1), on the location-scale form pGG,vt = μGG,vt + σGG,vt εGG,vt , where
μGGt and σGGt are the conditional mean and standard deviation of pGG,vt , respectively,
and εGG,vt is an iid random variable with zero mean and unit variance. Their V aR is1

V aRGG,1−α
T,1 = −P̃T vT (exp(μGG,vT+1 + σGG,vT+1 q

η
α)− 1), (3)

where qηα is the αth quantile in the Student’s t distribution with η degrees of freedom.
We argue that with the same motivation as we value the portfolio at the average price

at the end of the period, we should also value it at the average price in the beginning of
it. Thus the relevant one-period change in value is P̄ b

T+1(vT )vT − P̄ b
T (vT )vT . With the

corresponding log-return dynamics

pvt = μvt + σvt ε
v
t , (4)

our V aR alternative is

V aR1−αT,1 = −P̄ b
T (vT )vT (exp(μ

v
T+1 + σvT+1qα)− 1), (5)

where qα is the αth quantile of some suitable distribution.
For a horizon of h periods the V aR satisfies Pr{[P̄T+h(vT )−P̄T (vT )] vT ≤ −V aR1−αT,h |

FT}. However, the dynamics of the h-period returns do not follow easily from that of
the one-period returns (cf. Lönnbark, 2009). Note also that our V aR and the V aR in
Giot and Grammig (2006) are related by

V aR1−αT,h = V aRGG,1−α
T,h − (P̄T (v)− P̃T )vT .

1Actually, their V aR is the quantile of the distribution of the log-returns, but this is the implication
for the V aR definition we use.
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Hence, given one of the V aR’s it is possible to obtain the other through an additive
transformation that is known at time T . Note also that the difference between the two
measures grows with an increasing volume.

The V aR in (5) implicitly assumes that we own the portfolio at T . If it is to be
purchased at T we use P̄ a

T (vT ) for the initial price and the V aR becomes

V aR1−αT,1 = P̄ a
T (vT )vT − P̄ b

T (vT )vT exp(μ
v
T+1 + σvT+1qα). (6)

We end this section by giving the corresponding V aR’s for a short position. They
are, respectively, given by

V aR1−αT,1 = P̄ a
T (vT )vT (exp(μ

v
T+1 + σvT+1q1−α)− 1), (7)

V aR1−αT,1 = P̄ a
T (vT )vT exp(μ

v
T+1 + σvT+1q1−α)− P̄ b

T (vT )vT . (8)

Note that q1−α instead of qα appears in (7) and (8).

3 Data and descriptives

Our dataset consists of time series for the four largest banks in Sweden (Nordea NRD,
Skandinaviska Enskilda Banken SEB, Handelsbanken SHB, Swedbank SWB2) and covers
the period May 3 — August 8, 2005.3 Table 1 gives a few descriptive statistics for the
trading patterns in the four banking stocks for the first trading month (21 days) of the
data. The number of traded shares distributions are quite skewed with a long upper
tail and the largest transactions in each month are quite large. The largest transaction
was in SEB and amounted to about 1653 million SEK using the average price. This
corresponds to about 17 percent of total transactions during the month. For the other
stocks the corresponding percentages are about 4 percent. Trading is most frequent in
NRD with about 900 daily transactions or about 2 per minute.

The sampling frequency is chosen to be 30 minutes, such that the records immediately
preceding the given half-hour are chosen. The daily records cover 1000—1700, i.e. there
are 15 observations during the day and the total time series length is T = 936 for SEB
and SHB and T = 861 for NRD and SWB.

Table 1: Descriptive statistics for the number of traded shares and closing prices in
individual transactions for the four banks in the first trading month.

Nr of Traded Shares Closing Price
Bank Mean StDev Max Mean StDev n

NRD 9921.6 95424.5 7 383 816 67.7 0.42 19026
SEB 5341.5 1.12·105 12 946 377 127.7 1.81 14325
SHB 3963.1 33227.2 1 831 705 161.1 2.40 10445
SWB 3644.2 22917.7 1 299 919 171.4 2.56 11468

2Föreningssparbanken in the sample period.
3For technical reasons the period June 7—10 is missing for all banks, and additionally May 27—June

1 for SWB and NRD.
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Table 2: Cross correlations for log-returns (ask) in SHB across volume levels with v =

200000 as a base.

Volumes (thousands)
Lag 1 · 10−3 100 150 200 250 300
0 0.77 0.94 0.99 1.00 0.99 0.97
1 -0.01 -0.00 -0.03 -0.04 -0.04 -0.04
2 -0.02 -0.13 -0.13 -0.13 -0.13 -0.13
3 -0.07 -0.05 -0.06 -0.07 -0.07 -0.07
4 -0.03 0.00 0.00 0.01 0.01 0.01

Table 3: Parameter estimates and descriptive statistics for MA(1) models and their
residuals of the ask/bid (a and b) average log-return series of the four banks at volume
level v = 200000. p-values are used for the Ljung-Box statistics, LB.

Bank MA(1) t LB10 LB210 Skew Kurt
NRD a 0.088 2.59 0.86 0.02 0.26 3.60

b 0.141 4.15 0.95 0.03 -0.04 3.58
SEB a -0.030 -0.90 0.83 0.00 2.10 7.97

b -0.010 -0.32 0.82 0.00 -0.38 15.7
SHB a 0.044 1.34 0.05 0.00 0.76 6.73

b 0.063 1.94 0.60 0.00 -0.08 5.56
SWB a 0.088 2.60 0.31 0.63 1.11 8.39

b 0.018 0.54 0.63 0.00 -0.64 14.0

For the empirical modelling we can obtain time series of average prices for any chosen
volume level. For the analyses reported later we have chosen five volume levels v =
1, 100000(50000)300000 and all results are based on log-returns pvt = ln(P̄

v
t )− ln(P̄ v

t−1).
As an illustration of the spatial/volume correlations within stocks we consider log-returns
for the ask side of SHB, cf. Table 2. As expected from the smoothness of the average
curve in Figure 1, we find that correlations between log-returns at the different volume
levels are close to 1. Obviously, the correlations are weaker for lagged log-returns. The
autocorrelation function closely matches the cross correlation, except for for the first
volume level.

Based on the SWB series the autocorrelation functions suggest that MA(1) models
will account for most of the serial correlation in the time series. Table 3 gives estimated
models and some descriptive statistics for the residuals of the models. In all but one case
there is significant autocorrelation in squared residuals, suggesting that ARCH effects
are of major importance. For the ask series there is positive skewness and weak but
negative for the bid series. For most series there is substantial kurtosis.

4 A time series model for the average price curves

We specify the dynamics of the average price curves in terms of log returns. Stock prices
are widely taken to be random walks with drift and for returns various autoregressive
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and/or moving average extensions of the basic model seem to empirically surface. Based
on some initial specification searches on the SWB stock we take as a reasonable model

pv1t = αv1 + β0dt + εv1t + θ0ε
v1
t−1

pvit = αvi + β0dt + γvip
vi−1
t−1 + εvit + θviε

vi
t−1, i = 2, . . . ,m,

where pvit = log[P̄t(vi)]−log[P̄t−1(vi)]. The parameters γvi and θvi are volume dependent;
γvi = γ0 + γ1vi−1 and θvi = θ0 + θ1vi, i = 2, . . . ,m. The dt is a vector of dummy
variables to catch overnight impacts on the first observation of the day and time of day
effects. In addition, the models of different volume levels may be correlated such that
E(εt,viεs,vj ) 6= 0, for all vi, vj and also for t 6= s.

For all volume levels, v = {v1, v2, ..., vm}, we write

⎛⎜⎝ pv1t
...

pvmt

⎞⎟⎠ =

⎛⎜⎝ αv1
...

αvm

⎞⎟⎠+ β0dtι+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0

γv2

0 γv3
. . .

...
...

. . . . . .

0 . . . 0 γvm 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝ pv1t−1

...
pvmt−1

⎞⎟⎠

+

⎛⎜⎝ εv1t
...

εvmt

⎞⎟⎠+
⎛⎜⎜⎜⎜⎝

θv1 0 . . . 0

0 θv2
. . .

...
...

. . . . . . 0

0 · · · 0 θvm

⎞⎟⎟⎟⎟⎠
⎛⎜⎝ εv1t−1

...
εvmt−1

⎞⎟⎠
or compactly

pvt = α+ β0dtι+ Γvp
v
t−1 + εt +Θvεt−1, (9)

where ι is a vector of ones and εt has zero mean and conditional covariance matrix Σt.
Thus, the model is of VARMAX type and has both a time series and volume/spatial
dimension. The Σt may contain nonzero off-diagonal elements and is also indexed by
t to allow for ARCH-effects. For the conditional variances we employ a version of the
asymmetric GARCH specification of Glosten, Jagannathan, and Runkle (1993)

hvit = ωvi + δhvit + η(εvit−1)
2 + λ(εvit−1)

21(εvit−1 < 0), (10)

where 1(·) is the indicator function. Note that ωvi is the only parameter that changes
across vi. As a full baseline model for Σt we consider (10) together with constant off-
diagonal elements

Σt = Ω+δ diag(hvt ) + η diag(ε2,vt−1) + λ diag(ε2−,vt−1 ),

where hvt , ε
2,v
t and ε2−,vt have elements hvit , (ε

vi
t )
2 and (εvit )

21(εvit < 0), i = 1, ...,m,
respectively. The diag(·) operator returns a matrix with the vector argument on the
diagonal and zeros elsewhere. Hence, the conditional expectation and the conditional
variance of the log returns are, respectively, given by

E(pvt |Ft−1) = α+ β0dtι+ Γvp
v
t−1 +Θvεt−1

V (pvt |Ft−1) = Σt. (11)
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These expression are useful both for estimation and forecasting over time. From (9)
it is straightforward to obtain the corresponding price levels as P̄ vi

t = P̄ vi
t−1 exp(p

vi
t ),

i = 1, ...,m. The conditional expectation and variance of P̄ vi
t may be obtained by taking

first order expansions of the exponential function and (11).
With respect to the spatial aspects of the model note that this is an unusual context

of observation availability for all volume levels. However, for low levels the volume
curves are typically flat and for very large levels linear. Therefore, it appears reasonable
to focus the modelling exercise on the intermediate levels, where the curvature is most
pronounced. The way we choose v and m in the estimation phase impacts the precision
of the estimates, but as our model is not able to predict in the volume direction, the
choice is also practically related to the model’s end use for V aR calculations.

4.1 Estimation

When it comes to predicting the V aR we use a multivariate version of a popular method-
ology known as filtered historical simulation (FHS) in the literature (e.g., Christoffersen,
2009). To explain the approach we first collect all model parameters in the vector ψ and
consider the prediction error et = pvt −Eψ(pvt |Ft−1), where we subindex the expectation
operator to emphasize that it is to be taken under ψ. Assuming that the standardized
prediction errors ẽt= (Σ

1/2
t )−1et, t = 1, ..., T , is an iid sequence we may approximate the

conditional distribution of pvT+1 with the sequence p
v,∗
T+1,j = Eψ(p

v
T+1|FT ) + Σ

1/2
T+1ẽj ,

j = 1, ..., T . The predictors of the one-period V aR’s are then trivially obtained from
suitable empirical quantiles of the pv,∗T+1,j sequences.

The FHS is a two-step procedure that in the first step estimates the underlying
model parameters employing some estimator, ψ̂. In the second step it filters out the ẽt
sequence.

A natural choice for ψ̂ is the quasi maximum likelihood estimator. Given observations
up til time T it involves finding the ψ that maximizes the log-likelihood function

lnL = −1
2

XT

t=2
(ln |Σt|−e0tΣ−1t et).

For practical estimation we use the RATS 6.0 package and employ robust standard
errors.

5 Empirical results

The empirical results are summarized in terms of V aR measures in Table 4 for the
case when we own the portfolio at the horizon origin. Parameter estimates may be
found in Table 5. The measures are calculated for the first post sample time period,
i.e. 5PM of August 8 to 10AM of August 9, 2005. The numbers reported for a short
position are throughout larger than the ones for the corresponding long position. This
is a consequence of, at least, the asymmetry in average cost curves.

Figure 2 gives V aR’s per share for SWB. With some exceptions, there is a modest
growth in all measures. If we take the view that we own the portfolio at the horizon
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Table 4: VaR estimates for α = 0.01.

NRD SEB SHB SWB
Volume Short Long Short Long Short Long Short Long

1 0.59 0.38 1.29 1.33 1.30 0.53 1.63 0.86
100 000 57 698 37 733 136 107 119 240 125 733 74 944 175 379 92 403
150 000 86 138 48 532 225 120 161 578 198 631 116 893 281 068 174 078
200 000 113 910 61 606 307 464 212 012 313 717 182 451 416 784 222 729
250 000 139 688 74 507 414 339 286 324 463 808 248 137 528 713 299 420
300 000 166 669 84 207 517 234 366 692 591 360 341 902 606 274 382 042
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Figure 2: Value at Risk per share vs volume for long and short positions in the SWB
stock. GG refers to the V aR as given by the approach in Giot and Grammig (2006).
LHB1 and LHB2 are our V aR’s for a portfolio owned and purchased at T , respectively.

origin, our V aR’s are smaller than those calculated as in GG. If the portfolio is to be
purchased, they are larger. Noteworthy is also that for the latter view our V aR’s rise
more sharply with volume. There is a growing difference between our V aR’s and the
ones as in GG, starting from one half of a tick (0.25 SEK) at volume 1 to exceededing
2 ticks for the largest position of v = 300000 shares. Obviously, these differences will
have substantial consequences for how to set the required capital for large financial
institutions.
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