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Abstract

In general, the properties of the conditional distribution of multiple period returns

do not follow easily from the one-period data generating process. This renders

computation of Value-at-Risk and Expected Shortfall for multiple period returns a

non-trivial task. In this paper we consider some approximation approaches to com-

puting these measures. Based on the results of a simulation experiment we conclude

that among the studied analytical approaches the one based on approximating the

distribution of the multiple period shocks by a skew-t was the best. It was almost

as good as the simulation based alternative. We also found that the uncertainty

due to the estimation risk can be quite accurately estimated employing the delta

method. In an empirical illustration we computed �ve day V aR0s for the S&P 500

index. The approaches performed about equally well.
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1 Introduction

The focus of this paper is on predicting the risk for multiple period asset returns. An

important example when this is of interest is for the market-risk charge of the Basel

Committee on Banking Supervision (Basel), that is based on an horizon of 10 trading

days. The market risk is de�ned as the risk of adverse movements in the prices of the

assets in the portfolio and the measure underlying the market risk charge is the Value

at Risk (V aR) (de�ned below). Basel allows �nancial institutions to compute the 10

day V aR by multiplying the one day V aR by the square root of 10. However, it is

well known (e.g., Diebold, Hickman, Inoue, and Schuermann, 1997) that this approach

(Root-k) may give very erroneous V aR's and alternative approaches are thus called for.

When it comes to predicting more than one period ahead there are two approaches:

The direct approach speci�es a model for the relevant horizon, e.g., 10 days, directly,

whereas the iterating approach iterates on a model speci�ed for a shorter horizon, e.g.,

one day, to obtain the multiple period predictions. The �rst approach may be more ro-

bust to misspeci�cation, while the latter may produce more e�cient parameter estimates

(e.g., Marcellino, Stock, and Watson, 2006; Pesaran, Pick, and Timmermann, 2009). The

recommendation put forth by Diebold et al. (1997) is to use the direct approach for risk

predictions. Taylor (1999, 2000) propose a regression quantile approach that may be

viewed as a combination of the two. In practise, the computed risk measures are subject

to estimation error. Assume for example that we wish to predict the risk of an asset for

a 10 day horizon and that we have two years of daily return data. For the iterating ap-

proach we would typically specify a model for the daily returns and base the prediction

on the full sample of approximately 500 observations. For the direct approach on the

other hand we would have only 50 observations, which may not be enough for producing

a reliable prediction. We view this as a valid concern and focus here on the iterating

approach. Of course, an important underlying question that we neglect here is that of

whether the properties of the return distribution can be considered predictable for a

particular horizon (see Christo�ersen and Diebold, 2000, for a discussion on volatility

predictability).

As measures of (market) risk we consider V aR and the Expected Shortfall (ES). The

V aR has become the standard measure of market risk and it is commonly employed by

�nancial institutions and their regulators. The V aR has already received much attention

in the literature (see Jorion, 2007, for a survey) and it is de�ned as the maximum

potential loss over a given horizon that will not be exceeded with a given probability, or

Pr
�
portfolio loss � V aR1��

	
= �:

The probability 1 � � is commonly referred to as the con�dence level of the V aR.

The attractive feature of the V aR is that it summarizes the properties of the return

distribution into an easily interpreted number. However, it does not tell the risk manager

anything about the size of the loss when disaster strikes. A measure that does exactly

that is the ES. It is de�ned as

ES1�� = E
�
portfolio loss j portfolio loss � V aR1��

�
:
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Suppose now that the risk manager wants to assess the k-period risk of the portfolio

and decides to employ the iterating approach within the popular GARCH framework of

Engle (1982) and Bollerslev (1986). A problem that arises is then that the properties

of the multiple period return distribution may not follow easily from the one-period

model. For example, even though the multiple period conditional variance implied from

a one-period GARCH model with normal innovations is tractable, less so is the distri-

bution of the corresponding innovation (Boudoukh, Richardson, and Whitelaw, 1997).

Brummelhuis and Gu�egan (2005) provide a theoretical discussion on the matter. In

particular, they show that the Root-k rule may fail severely for small values on � (see

also Brummelhuis and Kaufmann, 2007).

Two alternative approaches are to compute the measures either by simulation (cf.

McNeil and Frey, 2000) or to consider some analytic approximation. The former com-

putes the measures as empirical counterparts for multiple period returns simulated from

the one-period model. Assuming that the true parameters of the one-period model are

known, the simulation approach can give measures arbitrarily close to the true ones.

We will discuss two analytical approximations. The �rst one uses a Gram-Charlier ex-

pansion of the conditional density of the multiple period returns. The second one was

proposed by Wong and So (2003, 2007) in related studies. It consists of specifying a

conditional distribution for the multiple period returns and of obtaining the parameters

of that distribution by matching its moments to the theoretical ones implied by the one-

period model. The obvious bene�t of using analytic approximations is that they require

less computer time. In Cotter (2007) an approach based on extreme value theory is

proposed. It performed poorly in simulations, though, and we do not consider it here.

As noted above, an additional source of uncertainty of the risk predictors arises from

the fact that the parameters of the underlying model are unknown, which gives rise to

estimation error. We also pay attention to this source of error, which is not done in Wong

and So (2003). Note that this uncertainty comes in in two places for the simulation based

predictor. Not only in estimating the parameters of the underlying model, but also in

the second step when the measures are obtained from the simulated returns.

The uncertainty in risk prediction should be of concern to risk managers. Surprisingly

little work has been done on it though and the predictions are often reported as if they

were true constants. For example Lan, Hu, and Johnson (2007) report that the research

on the uncertainty of V aR only amounts to about 2:5 percent of the V aR literature.

One study that recognizes that V aR and ES predictors are subject to uncertainty is

Christo�ersen and Gon�calves (2005), who use resampling techniques to study the uncer-

tainty of V aR and ES predictors in a GARCH framework. The obvious disadvantage

of their method is that it is time consuming since it amounts to repeated estimation

of a possibly complicated model. Analytical expressions (when su�ciently accurate) to

quantify the uncertainty are obviously preferred. For this purpose Chan, Deng, Peng,

and Xia (2007) and others consider the conventional delta method, which is done here

as well.

The paper is organized as follows. In Section 2 the approaches to computing the

multiple period V aR and ES are introduced. In Section 3 we discuss how to quantify
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the uncertainty due to the estimation error. An example is given in Section 4, where an-

alytical results are given for the asymmetric GARCH (GJR-GARCH) model of Glosten,

Jagannathan, and Runkle (1993). Section 5 contains a simulation study of the predictors

obtained from the GJR-GARCH. In Section 6 an empirical illustration for the S&P 500

index is included. The �nal section concludes.

2 Multiple period V aR and ES

Denote by w = (w1; :::; wM )
0 the time invariant vector of portfolio weights between T

and T+k. The log-return (return) between T and T+k for the portfolio is approximately

w0YT;k = w
0(yT+1 + :::+ yT+k), where yT+l = (y1;T+l; :::; yM;T+l)

0, l = 1; :::; k, is a M -

dimensional vector of one-period returns. Denote by 	T the information set at time T

and let the vector � contain the parameters governing the data generating process with

�0 denoting true values. In practise, the information available to the risk manager is

some realization of the partition, Ft0;T = (xt0 ; :::;xT ), of 	T and where xt; t = t0; :::; T;
typically contains past asset returns. A realization of the random partition, Ft0;T , is
denoted by Ft0;T . Denote by fT;k (�) and FT;k (�) the density function (pdf) and distri-
bution function (cdf) of w0YT;k conditional on 	T . Also, let �T;k be the vector valued

conditional mean function and HT;k the matrix valued conditional variance-covariance

function of YT;k. We will assume that it is possible to obtain the exact forms of these

conditional moments for all k.

Now, assume that the vector process, yt, of the asset returns started in the in�nite

past and that it is generated in discrete time up through, at least, T + k by

yt = �t +H
�
t"t; (1)

where "t has mean 0 and the identity matrix, I, as its variance-covariance matrix con-

ditional on the information available at t � 1. Then, �t is the conditional mean of yt,
whereas Ht = H

�
tH

�0
t is the conditional variance-covariance matrix.

The conditional V aR for the period T to T + k portfolio return satis�es

P
�
w0YT;k � �V aR1��T;k j	T

�
=

Z �V aR1��T;k

�1
fT;k (y) dy = �: (2)

The associated conditional ES is de�ned as

ES1��T;k = �ET
�
w0YT;k j w0YT;k � �V aR1��T;k

�
(3)

= � 1
�

Z �V aR1��T;k

�1
yfT;k (y) dy;

where ET (�) is shorthand for expectation conditional on 	T . The minus signs in (2)
and (3) stem from the convention of reporting V aR and ES as positive numbers.

For k = 1, V aR1��T;1 and ES1��T;1 can (in principle) be obtained directly from (1) along

with a distributional assumption on "T+1. Although complications may arise in this case

as well we choose here to focus on the case when k > 1. The further issue is then one
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of temporal aggregation and our point of departure is that it is not possible to obtain

V aR1��T;k and ES1��T;k analytically and that we have to resort to some approximations

]V aR
1��
T;k andgES1��T;k . We consider three such approaches. One is simulation based and

targets the measures directly, whereas the other two are analytical approximations and

start from an approximation to a zero mean and unit variance random variable, "T;k.

Denote by V aRS;1��T;k and ESS;1��T;k the values of ]V aR
1��
T;k andgES1��T;k computed by

the simulation approach. To explain the approach, we �rst assume that observations are

available up through T . We then simulate returns yrT+1; y
r
T+2; :::; y

r
T+k; r = 1; :::; R,

from the model (1) and compute the k-period portfolio returns w0Yr
T;k; r = 1; :::; R. The

V aR is obtained as the �th empirical quantile of the simulated portfolio returns, or

V aRS;1��T;k = �(w0YT;k)(�R+1) (4)

where (w0YT;k)(r) is the rth order statistic of simulated returns. The corresponding ES

is given by

ESS;1��T;k = �
P�R+1
r=1 (w0YT;k)(r)
�R+ 1

. (5)

Note that w0Yr
T;k is iid and it is well-known that the resulting estimators are consistent.

Given R though, one may of course argue that more e�cient related estimators based

on kernel functions exist. Chen and Tang (2005) and Chen (2008) found that, for the

kernel estimator proposed by Scaillet (2004), this is the case for V aR but not necessarily

for ES. Note however that R is at our discretion and extra precision comes at a small

marginal cost for models within a reasonable degree of complexity.

For the analytical approaches we �rst assume that the k-period portfolio return,

w0YT;k, admits the scale-location representation

w0YT;k = w
0�T;k + "T;k

p
w0HT;kw; (6)

where "T;k has zero mean, unit variance, conditional third moment, sT;k, conditional

fourth moment, kT;k, and conditional density function

gT;k (") =
p
w0HT;kwfT;k(�T;k + "

p
w0HT;kw):

From (6) we then have that

P
�
w0YT;k � �V aR1��T;k j	T

�
= P

�
w0(YT;k � �T;k)=

p
w0HT;kw

� (�V aR1��T;k �w
0�T;k)=

p
w0HT;kwj	T

�
= P

�
"T;k � q�T;kj	T

�
;

where q�T;k solves � =
R q�T;k
�1 gT;k (") d". The conditional portfolio V aR is then given by

V aR1��T;k = �w0�T;k � q�T;k
p
w0HT;kw: (7)

The conditional ES of the portfolio is

ES1��T;k = �w0T�T;k � e�T;k
p
w0HT;kw; (8)
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where e�T;k = ET

�
"T;k j "T;k � q�T;k

�
. We previously assumed that it was possible to

obtain the exact analytical forms of �T;k and HT;k. The problem is then one of approx-

imating the density gT;k (�). Denote this approximation by ~gT;k (�) and the associated
V aR and ES are then

]V aR
1��
T;k = �w0�T;k � ~q�T;k

p
w0HT;kw; (9)gES1��T;k = �w0�T;k � ~e�T;k

p
w0HT;kw; (10)

where ~q�T;k satis�es � =
R ~q�T;k
�1 ~gT;k (") d" and ~e

�
T;k =

eET ("T;k j "T;k � ~q�T;k). Note that
eET

is the expectation operator with respect to ~gT;k (�).
Our �rst analytical approximation employs an expansion of gT;k (�) allowing for skew-

ness and excess kurtosis. We assume that gT;k (�) admits the Gram-Charlier Type A
expansion

gT;k (") =

1X
i=0

ciHi (")�("); (11)

where the constants, ci, are functions of the conditional moments of "T;k, Hi (�) are the
Hermite polynomials and �(�) is the standard normal pdf . The sum in (11) is usually

truncated at a small value of i. Jondeau and Rockinger (2001) identify the versions

typically adopted in the literature to be the Edgeworth expansion and the Gram-Charlier

expansion. The latter is given by

~gT;k (") = [1 +
sT;k
6
H3 (") +

kT;k � 3
24

H4 (")]�("): (12)

The Edgeworth expansion adds the term s2T;kH6 (") =72 to the expression inside the

brackets in (12). Barton and Dennis (1952) show that the region of (sT;k; kT;k)-pairs

guaranteeing positive values is larger for the Gram-Charlier expansion, and for that

reason, Jondeau and Rockinger (2001) focus on the latter and so do we.

The �th quantile implied by the Gram-Charlier density in is given by the Cornish-

Fisher expansion (Cornish and Fisher, 1938; see also Baillie and Bollerslev, 1992, for a

related use)

~q�T;k = �
�1
� +

sT;k
6
[
�
��1�

�2 � 1] + kT;k � 3
24

[
�
��1�

�3 � 3��1� ]� s2T;k36 [2 ���1� �3 � 5��1� ]:
The third, sT;k, and the fourth, kT;k, conditional moments of "T;k are derived from the

one-period model. Christo�ersen and Gon�calves (2005) propose a corresponding ~e�T;k.

Giamouridis (2006) correctly argues that their expression is incorrect and propose

~e�T;k = �
�~q�T;k
�

�
1 +

sT;k
6

�
~q�T;k
�3
+
kT;k � 3
24

h�
~q�T;k
�4 � 2 �~q�T;k�2 � 1i� :

The V aR and the ES are obtained by plugging the expressions above into (9) and (10),

respectively. We denote the resulting approximations by V aRGC;1��T;k and ESGC;1��T;k .

Alternatively, Wong and So (2003) assume a distribution for "T;k and obtaining the

parameters of that distribution involves matching the third and the fourth moments
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to the corresponding ones implied by the one-period model. We denote the resulting

approximations by V aRWS;1��
T;k and ESWS;1��

T;k .

For comparison we also include the Root-k approach. The k-period V aR and the

ES are then simply approximated by

V aRRk;1��T;k =
p
kV aR1��T;1 ;

ESRk;1��T;k =
p
kES1��T;1 :

3 Estimation error

The traditional estimator of the parameter vector, �, in model (1) has over the years

been (conditional) maximum likelihood with a normality assumption on "t, i.e.

�̂ = argmax
�

(
LT (�) / �

1

2

TX
t=t0+s

[ln jHtj+ (yt � �t)0H�1
t (yt � �t)]

)
: (13)

Here, s is determined by the number of lags in �t and Ht. Given some regularity condi-

tions the estimator, �̂, is asymptotically, normally distributed with the true parameter

vector, �0, as its mean and with variance-covariance matrix�, which may be consistently

estimated by T�2[@LT (�̂)=@�@LT (�̂)=@�
0] or @2LT (�̂)=@�@�

0. As shown by Bollerslev

and Wooldridge (1992) and others, the estimator (13) remains consistent and asymptoti-

cally normal even if the distribution of "t is non-normal. The estimator is then known as

the Quasi-Maximum Likelihood (QML) estimator and we would use the robust sandwich

form as the estimator of �, i.e. (@2LT (�̂)=@�@�
0)�1(@LT (�̂)=@�@LT (�̂)=@�

0)(@2LT (�̂)=

@�@�0)�1.

For all four approaches the approximated risk measures are functions of the parame-

ters �. Therefore, the measures are not only subject to an approximation error, but also

to the estimation error in �̂. In the �rst approach this shows up in the simulations as

they are made from the model (1) under � = �̂. The other three predictors are obtained

by plugging the estimator, �̂, into (9) and (10) to obtain

[]V aR
1��

T;k = �w0�̂T;k � b~q�T;kqw0ĤT;kwdgES1��T;k = �w0�̂T;k � b~e�T;kqw0ĤT;kw.

Early attempts (see Schmidt, 1974) to quantify the e�ect on prediction of errors in

parameters relied on the asymptotic distribution of the parameter estimator assumed to

be independent of the conditioning information. In the notation set out in the beginning

of Section 2 the predictors are functions of 	t0;T both directly and indirectly through �̂.

Denote this (continuous) function by u
�
	t0;T ; �̂(	t0;T )

�
. The approach then amounts

to conditioning the �rst argument of u(�) on a realization �	t0;T and viewing randomness
to arise through the random 	t0;T in the second argument. This approach now appears

to be the convention (see Kaibila and He, 2004, for a recent discussion) and is chosen

in this paper as well. In a related study Hansen (2006) takes this route and shows that,
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for k = 1,
p
T �
�
[V aR

1��
T;1 � V aR1��T;1

�
d�! N

�
0; T ��2V aR;T;1

�
, where T � = T � (t0 + s),

�2V aR;T;1 = @V aR1��T;1 =@�
0 � @V aR1��T;1 =@� and where the limit is for t0 ! �1. This

approach is directly applicable to the analytical approximations approach. They are all

functions of the estimator, �̂, and the information set, 	t0;T . By the same logic as above

we have that p
T �
h
u
�
�	t0;T ; �̂

�
� u

�
�	t0;T ;�0

�i d�! N
�
0; T ��2u

�
; (14)

where �2u = @u=@�0�@u=@� and note that it is a function of �	t0;T . Explicitely, the

variance expressions for the V aR and ES approximations are, respectively, given by

�2V aR;T;k =
@]V aR

1��
T;k

@�0
�
@]V aR

1��
T;k

@�

�2ES;T;k =
@gES1��T;k

@�0
�
@gES1��T;k

@�
;

where @]V aR
1��
T;k =@� = � w0@�T;k=@� �

p
w0HT;kw@~q

�
T;k=@� � ~q�T;kw

0@HT;k=@� w=(2p
w0HT;kw) and @gES1��T;k =@� =�w0@�T;k=@��

p
w0HT;kw@~e

�
T;k=@��~e�T;kw0 @HT;k=@�

w=(2
p
w0HT;kw). In practise, estimators of the derivatives are obtained by plugging in

�̂.

Regarding the uncertainty of the simulation based predictor we �rst recognize that

it is a two-step procedure. The �rst step consists of estimating the model based on the

available observations, whereas the predictors in the second step are obtained based on

simulated returns from the estimated model. Hence, the estimation uncertainty comes

from two sources. Now, for notational convenience drop the time indices on the pdf and

the cdf of the k-period portfolio return and extend the functions to f (�;�) and F (�;�)
to indicate the value of the parameter. Also, let v�̂ and e�̂ (not to be confused with e

�
T;k

above) denote the true V aR1��T;k and ES1��T;k under the parameterization � = �̂. Now,

it is possible to show (see Manistre and Hancock, 2005, and references therein) that

conditional on �̂

v̂�̂
asy� N

�
v�̂; V

v
�̂

�
(15)

ê�̂
asy� N

�
e�̂; V

e
�̂

�
, (16)

where V v
�̂
= �(1 � �)=(f(v�̂; �̂)

2R) and V e
�̂
= [V (YT;k j YT;k < v�̂) + (1 � �)(e�̂ �

v
�̂
)2]=(R�). Of course, these variances do not recognize that �̂ is random. To derive such

expressions we use the variance decomposition formula and take a �rst order expansion

around �0. Ignoring higher order terms we have for v̂� that

V (v̂�̂) = E[V v
�̂
] + V [v�̂]

= E[V v
�0
+
@V v

�0

@�0
(�̂ � �0)] + V [v�0 +

@v
�0

@�0
(�̂ � �0)]

= V v
�0
+
@v

�0

@�0
�
@v

�0

@�
,
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where the expectation and the variance are taken over �̂, and where the �rst approxima-

tion is motivated by (15) and the second and third ones by the asymptotic properties of

�̂. The corresponding expression for ê�̂ is

V (ê�̂) = V
e

�0

+
@e

�0

@�0
�
@e

�0

@�
:

4 Approximations: An example

The discussion so far has been in a multivariate context, i.e. the conditional mean

and the conditional covariance function appeared explicitly in the expression for the

portfolio returns. We drop that explicitness here and assume that one-period returns

are generated by

yt =
p
ht"t;

ht = ! + �y2t�1 + �ht�1 + 
1 (yt�1 < 0) y
2
t�1; (17)

where "t is standard normally distributed and 1 (�) is the indicator function. To maintain
the portfolio context we can interpret (17) as a process for the cross-sectionally aggre-

gated returns of the assets in the portfolio.1 Deriving higher moments of temporally

aggregated multivariate GARCH models is technically demanding and to a large extent

an unexplored �eld, though, and we view it as beyond the scope of this particular study

(see Hafner, 2003, 2008, for some results).

The conditional variance speci�cation in (17) is the asymmetric

GARCH model of Glosten et al. (1993). The term, 
1(yt�1 < 0)y2t�1, in (17) extends

the basic GARCH(1; 1) of Bollerslev (1986) and captures the leverage e�ect in �nancial

markets, i.e. the asymmetric response of future volatility to positive and negative shocks.

This feature has empirically been found highly relevant and several other models to cope

with it exist. Wong and So (2003) consider for example the QGARCH model of Sentana

(1995) and Engle (1990). The most popular model in empirical work appears, however,

to be the GJR-GARCH. In fact, among several di�erent asymmetric GARCH models

applied to Japanese stock index data Engle and Ng (1993) found that the best performing

parametric speci�cation indeed was the GJR-GARCH.

The implied V aR1��T;k and ES1��T;k are given by

V aR1��T;k = �q�T;k
p
hT;k (18)

ES1��T;k = �e�T;k
p
hT;k: (19)

Direct calculation give that the multiple period conditional variance of YT;k is given

by

hT;k =
!

1� (�+ � + 
=2)

 
k � 1� (�+ � + 
=2)

k

1� (�+ � + 
=2)

!
+
1� (�+ � + 
=2)k

1� (�+ � + 
=2) hT+1:

1Berkowitz and O'Brien (2002) used a similar approach to study the accuracy of the V aR's reported

by commercial banks.
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The analytical approximations to q�T;k and e
�
T;k in (18) and (19) require that we

compute theoretical conditional moments of YT;k. We restrict ourselves to the third

and the fourth conditional moments and in the Appendix we show how these may be

obtained. The corresponding conditional moments of "T;k are then

sT;k =
ET (Y

3
T;k)

h
3=2
T;k

,

kT;k =
ET (Y

4
T;k)

h2T;k
:

When 
 = 0, the model (17) simpli�es to the basic GARCH(1; 1) model. Breuer and

Janda�cka (2007) give expressions for the conditional variance, hT;k, and the conditional

kurtosis, kT;k, of YT;k under GARCH(1; 1) variance.

When 
 6= 0, there is conditional skewness in YT;k and the derivation involves non-
integer moments ET

�
h
3=2
T+k

�
and ET

�
h
5=2
T+k

�
. Non-integer moments also arise in the

context of option pricing in the GARCH framework in Duan, Gauthier, Simonato, and

Sasseville (2006), who use Taylor expansions to approximate ET

�
h
1=2
T+k

�
and ET

�
h
3=2
T+k

�
.

This is the route taken here as well and the natural starting point for the expansions

in our conditional setting is the conditional expectation of the future conditional vari-

ance, i.e. ET (hT+k). The approximations would then have the form ET
�
hiT+k

�
=

a1 + a2ET
�
h2T+k

�
+ :::, where i = 3=2; 5=2 and the a's are functions of ET (hT+k).

An important issue is whether higher integer moments of hT+k exist or not for a

particular process. Ling and McAleer (2002) derive necessary and su�cient condi-

tions for the unconditional expectation of hmT+k, m integer, to exist for the family

of GARCH(1; 1) processes in He and Ter�asvirta (1999). The family nests the GJR-

GARCH and if E
�
j"j2m

�
< 1 the conditions for that particular model are !m < 1

and E
��
� + [�+ 
1 ("t�1 < 0)]"2t�1

��m
< 1. The condition for the unconditional vari-

ance of yt to exist is for example !=(1 � � � � � 
=2) > 0. Even though the setting

here is conditional these conditions can potentially put restrictions on the applicability

of our approximation approaches as they require computation of higher moments of yt.

Here, we consider second order expansions.

The approximations based on the Gram-Charlier expansion and the Root-k need no

additional comments and are directly obtained by plugging in the expressions for sT;k and

kT;k. When it comes to choosing a distribution for "T;k in the second approach our only

requirement is that the �rst �ve moments exist for the distribution, and we thus have

a large menu to choose from. In the �nance literature several distributions have been

studied in the context of allowing for conditional skewness and excess kurtosis. Harvey

and Siddique (1999) consider a non-central t distribution. Br�ann�as and Nordman (2003)

study the Pearson type IV and the log-generalized gamma. Given that the requirement

is satis�ed it is di�cult to ex ante argue in favor of one distribution over another. A

distribution that has gained increasing popularity in the literature (e.g. Jondeau and

Rockinger, 2006) is the skewed Student's t distribution of Hansen (1994). Wong and

So (2003) propose the distribution in Theodossiou (1998), which is similar to the one

9



in Hansen (1994). They do not pursue the analysis allowing for skewness though and

restrict themselves to the symmetric Student's t distribution.

The pdf of a zero mean and unit variance skew-t distributed variable, Z, is

g (z) =

8>>><>>>:
bc

�
1 + 1

��2

�
bz+a
1��

�2��(�+1)=2
; z < �a=b;

bc

�
1 + 1

��2

�
bz+a
1+�

�2��(�+1)=2
; z � �a=b;

(20)

where 2 < � < 1, �1 < � < 1, a = 4�c (� � 2) = (� � 1), b2 = 1 + 3�2 � a2 and
c = �[(� + 1) =2]=

hp
� (� � 2)�(�=2)

i
. In this particular case the approach consists

of matching sT;k and kT;k to the corresponding moments of the skew-t distribution.

Jondeau and Rockinger (2003) show that the third and fourth moments of the skew-t

distribution are given by

E
�
Z3
�
=

�
m3 � 3am2 + 2a

3
�
=b3;

E(Z4) =
�
m4 � 4am3 + 6a

2m2 � 3a4
�
=b4;

where m2 = 1+ 3�
2, m3 = 16c �(1 + �

2)(� � 2)2=[(� � 1)(� � 3)] and m4 = 3(� � 2)(1+
10�2 + 5�4)=(� � 4). The third moment is de�ned for � > 3, while the fourth is de�ned
for � > 4. The implied values on � and � are then obtained as the solution in terms of

sT;k and kT;k to

sT;k =
�
m3 � 3am2 + 2a

3
�
=b3

kT;k =
�
m4 � 4am3 + 6a

2m2 � 3a4
�
=b4: (21)

Except for the symmetric case, i.e. � = 0, (when � = (6� kT;k) = (3� kT;k)) we were
not able to derive � and � as nice explicit functions of sT;k and kT;k. Obtaining the

values then amounts to solving the system numerically.2 Of course, the valid region for

� and � also implies a region in the sT;k and kT;k dimension. Jondeau and Rockinger

(2003) note that the relation between these regions is bijective when � > 4 and j�j < 1
implying that the solution to (21) is unique.

To compute the V aR and ES we require expressions for ~q�T;k and ~e
�
T;k as inputs to

(9) and (10), respectively. Jondeau and Rockinger (2003) show that the �th quantile of

the skew-t distribution is given by

q� =

8<:
1
b

h
(1� �)

q
��2
� F

�1
�

�
1��

�
� a
i
if � < 1��

2 ;

1
b

h
(1 + �)

q
��2
� F

�1
�
�+�
1+�

�
� a
i
if � � 1��

2 :
:

2In the simulation study in Section 5 we employed the following solver

(�; �)0 = argmin
�1<�<1;�>4

�
sT;k �

�
m3 � 3am2 + 2a

3� =b3�2
+
�
kT;k �

�
m4 � 4am3 + 6a

2m2 � 3a4
�
=b4
�2

Issues with using a solver of this type are discussed in Press, Teukolsky, Vetterling, and Flannery

(2007, ch. 9). However, it performed satisfactory in our application with function values close to zero.

We also compared it to the Newton-Raphson algorithm in Press et al. (2007, ch. 9, p. 475) and almost

identical values were obtained. The latter was highly sensitive to the starting values, though.

10



In the Appendix we show that, for � < (1� �)=2

E (" j " � q�) = �(1� �)
2

�b

"p
v(� � 2)
� � 1

�
1 +

q�2�
�

�
f (q��)

+
a

1� �F (q
�
�)

�
;

where q�� = (bq+a)
p
�=(� � 2)=(1��) and f and F are the pdf and cdf of the Student's

t distribution.

Quantifying the uncertainty of the predictors follows from Section 3.

5 Simulation study

The discussion regarding the approximative predictors has so far been theoretical, but

what is of obvious practical interest is their properties in �nite sample. We address this

question by means of quite detailed Monte Carlo simulations based on the model in (17).

The study was carried out using the RATS 6.30 package. To estimate the GJR-GARCH

models we employed the built-in GARCH procedure with the BFGS-algorithm, but as

the variance-covariance estimator we used T�2(@ lnLT (�̂)=@� @ lnLT (�̂)=@�
0).

When it comes to designing the experiment we note for the variance speci�cation

that the degree of persistence and asymmetry are of particular interest. In a related

study Christo�ersen and Gon�calves (2005) simulate the GARCH(1; 1)-model with ! =

(1� �� �)202=252, � = 0:1 and persistence parameter � = 0:4; 0:8 and 0:89. Here, the
additional parameter 
 introduces asymmetry and we consider three degrees: (�; 
) =

(0:1; 0), (0:05; 0:1) and (0; 0:2). The unconditional variance is thus the same throughout.

For estimation we use samples of sizes 500 and 1000, which are realistic sample sizes

corresponding to approximately 2 and 4 years of daily trading data. For the simulation

based predictor we use R = 100 000 to isolate the e�ect of the estimation error in �̂.

The results are based on N = 1000 replications. Note however, that we discard without

replacement the cases when the ML estimator did not converge to a valid point or when

an approximation failed for some reason. Table A1 in the Appendix gives the proportions

of cases when this happened. The remaining design parameters are the con�dence level

and the horizon. Increasing the con�dence level means that we make predictions further

out in the left tail, which intuitively increases the uncertainty. Predicting further into

the future is also associated with greater uncertainty, which should be re
ected in the

performance of the predictors. We set the con�dence level to either 95% or 99% and

consider k = 5 and 10. In Table 1 we give bias, mean square errors (MSE) and estimated

asymptotic variances (EAV) for the case � = 0:8 and (�; 
) = (0:05; 0:1). The tables for

the other parameter combinations are given in the Appendix.

We make no distinction between V aR and ES in the discussion as the results are

qualitatively similar. Considering �rst the bias we see that it is largest and negative

for the Root-k approach. The bias for the G-C approach is positive for all cases and

surprisingly large for the higher con�dence level. Overall, it is the smallest for the

W-S and the simulation based approaches. With some exceptions, the bias gets more

11



pronounced when increasing the con�dence level and the horizon, and it decreases when

increasing the sample size. Turning to the accuracy in terms of MSE we again have a

rather clear ranking with the Root-k approach being the worst and the W-S and the

simulation based approach tied in �rst place. Without exceptions, the qualitative e�ects

of the design variables are the same as for the bias. Of interest for the computation of,

e.g., prediction intervals is how well the delta method approximates the �nite sample

variance of the predictors. To scrutinize on this we may compare the MSE to the average

of the corresponding estimated asymptotic variances.3 The delta method appears to

perform quite satisfactorily for the GC, the W-S and the simulation based approaches.

Regarding the Root-k approach it is di�cult to draw any conclusions due to the often

large bias.

In a smaller scale experiment we examined the robustness of the results for data

generated according to a GJR-GARCH process (� = :05, � = 0:8 and 
 = 0:1) and

with skew{t innovations (� = �0:2 and � = 8). We computed the predictors for a

con�dence level of 95% and k = 5 based on T = 1000 both with a correct distributional

assumption and with an incorrect assumption of normality (cf. QMLE). Regarding the

former the predictors need to be adapted to the skew-t distribution and the corresponding

derivations may be found in the Appendix.

The results are given in Table A10 of the Appendix and, with some exceptions,

they are qualitatively similar to the ones above when the model is correctly speci�ed.

However, it is noteworthy that the delta method appears to work poorly in many cases.

Also, the bias and the MSE for the GC-approach in case of ES prediction is very high.

Under an incorrect normality assumption the bias is negative in all cases and the ranking

is di�erent.

An important question we wish to answer is that of which method is the best. For

this we use a Diebold-Mariano type of test (Diebold and Mariano, 1995). They show

that the predictive superiority of one predictor over another can be tested by means

of a simple t-test of the standardized di�erence between the loss functions. Here, the

loss function is the squared prediction error and the test statistic was computed as the

t-statistic in the regression of the pooled di�erences on a constant. To take care of

heteroskedasticity we used Eicker-White standard errors. In Table 2 we give results for

all pairwise tests.

Among the analytical approaches the one based on the skew-t distribution is judged

the best. In fact, it also fares better than the simulation based in case of ES prediction.

For V aR, all analytical approaches are rejected in favor of the simulation based. The

actual di�erences between the simulation based and the one based on the skew-t is small,

though. In a practical situation one would thus supposedly prefer the latter thanks to its

advantage in computing time. For example, consider the task of computing V aR and ES

for con�dence levels 95% and 99% and horizons of 5 and 10 periods given that parameter

3Here we rely on a central limit theorem argument. Let fZngNn=1 be independently distributed vari-
ables with zero means and variances �2n. Then

PN
n=1 Z

2
n=N is a consistent estimator of ��2 =

PN
n=1 �

2
n=N .

Hence, when the bias is small the average of the estimated asymptotic variances should be close to the

MSE.

12



Table 1: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = !+0:05y
2
t�1+0:8ht�1+0:11(yt�1 < 0)y

2
t�1. MSE is the mean square

error and EAV is the average estimated asymptotic variance. The averages are for the

true values.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Average 4.7041 6.7147 6.2311 8.9773

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.1109 0.1524 0.1243 -0.2200 0.4417 0.2486 -0.4707 0.4247 0.1955 -0.8322 1.2222 0.3910

G-C 0.0357 0.1401 0.1404 0.0675 0.3247 0.3081 0.2340 0.5080 0.5319 0.5437 1.8331 1.8692

S-W 0.0280 0.1364 0.1329 0.0446 0.3062 0.2810 -0.0058 0.2776 0.2818 -0.0068 0.6915 0.6743

Sim -0.0115 0.1301 0.1484 -0.0203 0.2876 0.3447 -0.0195 0.2753 0.2869 -0.0429 0.6780 0.6704

T = 1000

Root-k -0.0995 0.0734 0.0572 -0.2028 0.2723 0.1145 -0.4567 0.2931 0.0900 -0.8112 0.9393 0.1801

G-C 0.0456 0.0605 0.0652 0.0873 0.1454 0.1446 0.2231 0.2403 0.2238 0.5176 0.9450 0.7638

S-W 0.0387 0.0586 0.0621 0.0669 0.1348 0.1326 0.0091 0.1199 0.1304 0.0243 0.3057 0.3154

Sim -0.0010 0.0545 0.0673 -0.0007 0.1238 0.1577 -0.0013 0.1179 0.1339 -0.0063 0.2994 0.3164

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Average 7.1562 10.3360 8.6290 12.5751

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.6596 0.6892 0.2486 -1.1496 1.9641 0.4973 -1.1858 1.7309 0.3264 -2.0496 4.9457 0.6527

G-C 0.1247 0.5109 0.5478 0.2657 1.5148 1.5921 0.3088 0.9728 0.9175 0.3404 2.1102 2.1023

S-W -0.0211 0.3923 0.3982 -0.0259 0.9982 0.9835 -0.0896 0.6902 0.7208 -0.1418 1.9228 1.9354

Sim -0.0231 0.3947 0.4470 -0.0555 0.9890 1.1618 -0.0303 0.7290 0.7875 -0.0808 1.9926 2.0277

T = 1000

Root-k -0.6438 0.5185 0.1145 -1.1261 1.5978 0.2290 -1.1681 1.4975 0.1503 -2.0237 4.4416 0.3006

G-C 0.1358 0.2279 0.2434 0.2829 0.6916 0.6898 0.3652 0.5425 0.4611 0.5443 1.2579 1.0328

S-W -0.0031 0.1706 0.1839 0.0116 0.4435 0.4598 -0.0688 0.3047 0.3285 -0.0998 0.8602 0.9024

Sim -0.0008 0.1700 0.2055 -0.0084 0.4368 0.5428 0.0010 0.3173 0.3656 -0.0147 0.8926 0.9634
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Table 2: Diebold-Mariano t-tests. Positive values are in favor of the method in the second

row. The loss function is the squared prediction error and the statistics were computed

from the regression of the pooled di�erences on a constant using Eicker-White standard

errors. The average di�erences are given in parentheses.

Root-k Root-k Root-k G-C G-C S-W

vs. G-C S-W Sim S-W Sim Sim

V aR 48.441 72.704 74.094 30.599 31.051 8.980

(0.351) (0.467) (0.471) (0.117) (0.121) (0.005)

ES 50.354 107.547 107.019 44.180 43.808 -4.231

(0.853) (1.396) (1.390) (0.542) (0.536) (-0.004)

Table 3: E�ects of design variables on the accuracy of the predictors. The numbers are

the values on t-tests of zero coe�cents in dummy variable regressions, where the base

case is T = 500, � = 0:05, k = 5, � = 0:8 and 
 = 0:1.

Root-k G-C S-W Sim

Dummy VaR ES VaR ES VaR ES VaR ES

T = 1000 -12.438 -6.576 -33.782 -24.312 -37.497 -41.051 -39.098 -40.875

� = :01 147.422 148.049 79.504 34.673 64.808 56.867 66.674 59.286

k = 10 79.897 90.368 52.018 54.081 47.605 50.566 47.553 50.450

� = :4 -17.208 -47.475 -28.518 -31.511 -22.629 -22.056 -24.940 -22.676

� = :89 -19.582 -11.402 -16.423 -12.319 -16.621 -19.465 -15.831 -19.242


 = :0 -55.443 -88.258 -23.289 -38.378 -19.264 -26.797 -16.953 -25.971


 = :2 45.713 67.273 11.665 25.276 4.441 7.945 2.382 5.776

estimates have been obtained. Along with standard errors it takes approximately 25

seconds on a 1:83 GHz Intel Centrino Duo processor employing the simulation based

approach, while the other approaches compute the quantities within the blink of an eye.

Of further practical interest is how the prediction accuracy varies with the design

variables, i.e. the sample size, con�dence level, horizon and model parameters. For this

we ran the dummy variable regressions

ln([V aR
1��
T;k � V aR1��T;k )

2 = �0vd+�v;

ln(dES1��T;k � ES1��T;k )
2 = �0ed+�e;

where d is a vector of dummy variables indicating value on design variable and �v and

�e are the error terms. We again used Eicker-White standard erros. The base case is

taken to be T = 500, � = :05, k = 5, � = :8 and 
 = :1. We ran one regression for each

method and the results are given in Table 3.

The results were uniform across the methods and qualitatively the same for V aR

and ES. Not surprisingly, doubling the sample size signi�cantly increased the accuracy.
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The predictions at con�dence level 99% were signi�cantly less accurate than the ones at

the 95% level. Increasing the horizon from 5 to 10 periods signi�cantly decreased the

accuracy. Both when increasing and reducing the persistence in the conditional variance

the accuracy is signi�cantly enhanced compared to the base case. Regarding the e�ects of

asymmetry we note that predictions for the no asymmetry case (i.e. standard GARCH)

are signi�cantly more accurate than the ones for the base case. The opposite is true for

the case when only negative shocks a�ects the future variance.

6 Empirical illustration

In this section we provide a small illustration of the above approximation approaches,

where the object of interest is the �ve day V aR of the S&P 500 index. Eight years of

daily data were downloaded from DataStream and the sample covers October 31, 2000

to October 31, 2008, for a total of 2089 daily observations on the index.

Returns were calculated as yt = 100 � log (It=It�1), where It is the value of the
index at t. We assume that daily returns are generated by a GJR-GARCH process with

a constant mean and standard normally distributed shocks. In the estimation of the

model as is we often obtained a negative coe�cient on the squared residual. This causes

problems for the simulation based predictor, since the conditional variance may become

negative in the out of sample simulations. To force positive variances we adopted the

following version

ht = ! + exp(�)u
2
t�1 + �ht�1 + 
1 (ut�1 < 0)u

2
t�1;

where ut is the one-period ahead prediction error. Regarding the computation of V aR

a comment is in place. Recall the decomposition YT;k = �T;k + "T;k
p
hT;k. As inputs to

the G-C and W-S approximations we require the conditional skewness and kurtosis of

"T;k. Those were derived in the Appendix under a zero conditional mean of YT;k. Here,

we use the same derivation but replace YT;k with YT;k � �T;k, where �T;k = k�. Note

also that the uncertainty in � should be recognized in the computation of the variances

of V aR.

Based on a rolling prediction scheme we obtained V aR predictions at the con�dence

level 95% and in estimation we considered samples of size 500 observations. We discarded

cases when the computation of the predictors failed for some reason and obtained 1522

predictions. Robust standard errors of the sandwich form were employed throughout.

The �nal successfully estimated model (October 3, 2008) on the implied conventional

form is given below along with some diagnostics.
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yt = �0:018
(�0:52)

+ ut;

ht = 0:014+
(1:95)

1� 10�5
(0:10)

u2t�1 + 0:891
(36:88)

ht�1 + 0:211
(4:99)

u2t�11(ut�1 < 0);

L = �662:24; LB10 = 8:22; LB210 = 6:95; JB = 0:29;

where t-statistics are given in parentheses, L is the value of the log-likelihood function,

LB10 and LB
2
10 give the values of the test-statistics in the Ljung-Box test of no auto-

correlation up to lag 10 in standardized residuals and squared standardized residuals,

respectively, and JB is the value of the test-statistic in the Jarque-Bera normality-test.

The conditional variance is highly persistent and the asymmetric e�ect of past shocks

is considerable. Noteworthy is also that there is no remaining ARCH-e�ect in the stan-

dardized residuals and that normality is not rejected.

When it comes to assessing the performance of the V aR predictors we follow the

likelihood ratio framework of Christo�ersen (1998). Let P denote the number of V aR

predictions and let Ht, t = 1; :::; P , denote the hit sequence, i.e. Ht = 1 if the actual

return exceeds the predicted V aR and is 0 otherwise. For a good V aR predictor the

unconditional exceedence rate, �̂ =
P
Ht=P , should be close to �. This can be tested

by the statistic LRunc = �2 ln[(1 � �)P�H�H ]+ 2 ln[(1 � �̂)P�H �̂H ]. Christo�ersen
(1998) notes that the hit sequence should not only sum up to �P , but also be an iid

Bernoulli sequence with parameter �. As a test of independence he proposes the test

statistic LRind = �2 ln[(1 � �̂)P00+P10�̂P01+P11 ]+ 2 ln[(1 � �̂0)P00 �̂P010 (1 � �̂1)P10 �̂P111 ],

where Pij is de�ned as the number of periods in which state j occurred in one period,

while state i occurred the previous period and �i is the probability of a hit conditional

on state i the previous day.4 He proposes LRcc = LRunc + LRind as a statistic for

the joint test of correct conditional coverage. Asymptotically LRunc and LRind are

�2(1)-distributed, while LRcc is �
2(2)-distributed. Our multiple period context may

give rise to serial dependence in the raw hit sequence. To cope with the problem we use

Bonferroni subsamples (Dowd, 2007). Thus, the raw hit sequence is split up into �ve hit

sequences and the statistics are computed for each sequence. We reject an overall test

at signi�cance level � if the test is rejected for any of the subsamples using level �=5.

The unconditional exceedence rates for the predictors are 5:532%, 5:506%, 5:506%

and 5:512% for the Root-k, G-C, W-S and simulated based approach, respectively. In

Figure 1 we display V aR's and standard errors for the turbulent period September 5,

2008 to October 3, 2008.

To digress further on the performance of the predictors we present in Table 4 the

results of the backtesting of the V aR predictors. The approaches perform very similarly

and no results are signi�cant at conventional levels. Note that the performances of all

predictors are quite weak when the prediction origin is a Monday (too many hits) or a

Thursday (too few hits).

4When �̂1 = 0 we used LRind = �2 ln[(1 � �̂)P00+P10 �̂P01+P11]+ 2 ln[(1 � �̂0)P00 �̂P010 (cf. Christof-

fersen and Pelletier, 2004).
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Standard errors of VaR's.
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Figure 1: V aR's for 100� log-returns for the S&P 500 index.

Table 4: Backtesting of the VaR predictors. The top row indicate day of the week of

the prediction origin.

Root-k G-C

M T W T F M T W T F

�̂ 0.0689 0.0498 0.0525 0.0391 0.0559 0.0656 0.0465 0.0492 0.0391 0.0526

LRunc 2.0525 0.0002 0.0382 0.8293 0.2165 1.4244 0.0789 0.0043 0.8293 0.0436

LRind 0.0540 0.1275 0.0640 0.8782 1.6185 0.0311 1.2665 1.4333 0.8782 1.4223

LRcc 2.1064 0.1277 0.1022 1.7075 1.8350 1.4555 1.3453 1.4376 1.7075 1.4659

S-W Sim

M T W T F M T W T F

�̂ 0.0656 0.0465 0.0492 0.0391 0.0526 0.0656 0.0465 0.0492 0.0391 0.0559

LRunc 1.4244 0.0789 0.0043 0.8293 0.0436 1.4244 0.0789 0.0043 0.8293 0.2165

LRind 0.0311 1.2665 1.4333 0.8782 1.4223 0.0311 1.2665 1.4333 0.8782 1.6185

LRcc 1.4555 1.3453 1.4376 1.7075 1.4659 1.4555 1.3453 1.4376 1.7075 1.8350
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7 Conclusions

In this paper we studied four methods to approximate V aR and ES for multiple period

returns. We also viewed the uncertainty arising from the estimation error important and

we discussed how to employ the delta method to quantify this uncertainty. Based on

the result of a simulation experiment we conclude that among the approaches studied

the one based on assuming a skew-t distribution for the multiple period returns and

that based on simulations were the best. The predictors based on the Root-k and the

Gram-Charlier showed positive and negative bias, respectively. Except for the Root-

k approach we found that the uncertainty due to the estimation error can be quite

accurately estimated employing the delta method.

In an empirical illustration we computed 5 day V aR0s for the S&P 500 index using

the approximative predictors. In terms of exceedence rates all approaches performed

similarly and we could not reject any of them at conventional signi�cance levels.
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Appendix

Conditional moments of YT;k with GJR-GARCH conditional variance

We consider here the case ET (yT+i) = 0 and when deriving the conditional moments

it is helpful to use the decomposition YT;k =
Pk�1
i=1 yt+i + yt+k. Let s = E("3T+i) and

� = E("4T+i). For notational convenience we let " = "T+i. Obtaining the moments then

amounts to solving the system

ET

24 k�1X
i=1

yT+i

!235 = ET

 
k�2X
i=1

yT+i

!2
+ ET (hT+k�1) (A1)

ET

24 kX
i=1

yT+i

!335 = sET (h
3=2
T+k) + ET

 
k�1X
i=1

yT+i

!3

+3ET

 
hT+k

k�1X
i=1

yT+i

!
(A2)

ET

24 kX
i=1

yT+i

!435 = �ETh
2
T+k + ET

 
k�1X
i=1

yT+i

!4

+4sET

 
h
3=2
T+k

k�1X
i=1

yT+i

!

+6EThT+k

 
k�1X
i=1

yT+i

!2
(A3)

ET (hT+k) = ! + �EThT+k�1 (A4)

ET

�
h
3=2
T+k

�
� 5

8
(EThT+k)

3=2

+
3

8
p
EThT+k

ETh
2
T+k (A5)

ET
�
h2T+k

�
= !2 + 2!�ET (hT+k�1)

+�ETh
2
T+k�1 (A6)

ET

�
h
5=2
T+k

�
� �7

8
(EThT+k)

5=2

+
15

8

p
EThT+kETh

2
T+k (A7)

ET

 
ht+k

k�1X
i=1

yt+i

!
= [�s+ 
E(1(" < 0)"3)]ETh

3=2
T+k�1

+�ET

 
hk+t�1

k�2X
i=1

yi+t

!
(A8)

ET

"
h
3=2
T+k

 
k�1X
i=1

yT+i

!#
� 3

4
(EThT+k)

1=2ET

"
hT+k

 
k�1X
i=1

yT+i

!#
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+
3

8
p
EThT+k

ET

 
h2T+k

k�1X
i=1

yT+i

!
(A9)

ET

 
h2T+k

k�1X
i=1

yT+i

!
= 2!�ET

 
hT+k�1

k�2X
i=1

yT+i

!

+�ET

 
h2T+k�1

k�2X
i=1

yT+i

!
+�ET

�
h
5=2
T+k�1

�
+[2�!s+ 2
!E(1(" < 0)"3)]

�ET
�
h
3=2
T+k�1

�
(A10)

ET

24hT+k
 
k�1X
i=1

yT+i

!235 = !ET

 
k�2X
i=1

yT+i

!2

+�ET

24hT+k�1
 
k�2X
i=1

yT+i

!235
+[2�s+ 2
E(1(" < 0)"3)]

�ET

"
h
3=2
T+k�1

 
k�2X
i=1

yT+i

!#
+!EThT+k�1 + �ET

�
h2T+k�1

�
; (A11)

where 1(�) is the indicator function, � = � + � + 
E(1(" < 0)"2), � = �2 + ��2 +

2�
E(1(" < 0)"4)+2��+2�
E(1(" < 0)"2)+
2E(1(" < 0)"4), � = ��+�+
E(1(" <

0)"4) and � = �2E("5)+2�
E(1(" < 0)"5)+2��s+2�
E(1(" < 0)"3)+
2E(1(" < 0)"5).

When " is Gaussian we have s = E("5) = 0 and E("4) = 3. Also, it is straightforward

to show that E(1(" < 0)") = ��(0). For integer r > 1 it holds that
R 0
�1 z

r�(z)dz =

(r � 1)
R 0
�1 z

r�2�(z)dz. We have E(1(" < 0)"2) = 1=2, E(1(" < 0)"3) = �2�(0),
E(1(" < 0)"4) = 3=2 and E(1(" < 0)"5) = �8�(0).

Properties of the skew-t distribution

We take a, b, c, m2, m3 and m4 as they are given in the text. Jondeau and Rockinger

(2003) give the �th quantile of the skew-t distribution as

q� =

8<:
1
b

h
(1� �)

q
��2
� F

�1
�

�
1��

�
� a
i
if � < 1��

2 ;

1
b

h
(1 + �)

q
��2
� F

�1
�
�+�
1+�

�
� a
i
if � � 1��

2 ;

where F�1(�) is the inverse of the cdf of the Student's t distribution with � degrees of
freedom.

To solve the system (A1) - (A11) we require some integer moments. We �rst

derive the censored ones for the standardized Student's t distribution. Let �qm =
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R q
�1 x

mt (x) dx, where t(x) = c [1 + x2=(� � 2)]�(�+1)=2. �q0 is obvious and adapting
a result in Andreev and Kanto (2005) gives

�q1 = �
� � 2
� � 1

�
1 +

q2

� � 2

�
t (q) :

By integration by parts we have for m > 1

�qm =

Z q

�1
xmc

�
1 +

x2

� � 2

��(�+1)=2
dx

=

�
�xm�1 � � 2

� � 1

��
1 +

x2

� � 2

�
t(x)

��q
�1

+(m� 1)� � 2
� � 1

Z q

�1
xm�2 c

�
1 +

x2

� � 2

�
t(x)dx

= qm�1�q1 + (m� 1)
� � 2
� � 1

�
�qm�2 +

�qm
� � 2

�
:

Then

�qm =
� � 1
� �m

�
qm�1�q1 + (m� 1)

� � 2
� � 1�

q
m�2

�
:

Now, for the skew-t distributed variable Z we have for q < �a=b

E(1(Z � q)Zm) =

Z q

�1
zmbc

 
1 +

1

� � 2

�
bz + a

1� �

�2!�(�+1)=2
dz

=
��
bm

Z q�

�1
[��y � a)]mt(y)dy

=
��
bm

Z q�

�1

mX
i=0

 
m

i

!
�m�i� (�a)iym�it(y)dy

=
��
bm

mX
i=0

 
m

i

!
�m�i� (�a)i�q�m�i;

where we use a change of variable y = (bz + a)=(1 � �) in the �rst step, and where
�� = 1� � and q� = (bq + a)=(1� �). We obtain

E(1(Z � q)Z) =
��
b
(���

q�
1 � a�

q�
0 );

E(1(Z � q)Z2) =
��
b2
(�2��

q�
2 � 2a���

q�
1 + a

2�q�0 );

E(1(Z � q)Z3) =
��
b3
(�3��

q�
3 � 3a�2��

q�
2 + 3a

2���
q�
1 � a3�

q�
0 );

E(1(Z � q)Z4) =
��
b4
(�4��

q�
4 � 4a�3��

q�
3 + 6a

2�2��
q�
2 � 4a3���

q�
1 + a

4�q�0 );

E(1(Z � q)Z5) =
��
b5
(�5��

q�
5 � 5a�4��

q�
4 + 10a

2�3��
q�
3 � 10a3�2��

q�
2 + 5a

4���
q�
1 � a5�

q�
0 ):

Note that in the computation of ES we use E (Z j Z � qa) = E(1(Z � qa)Z)=�:
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For E
�
Z5
�
we build on Jondeau and Rockinger (2003), who rely on the result of

Gradshteyn and Ryzhik (1994):Z 1

0
x��1(p+ qx�)�(n+1)dx =

1

�pn+1

�
p

q

��=� �(�=�)�[1 + n� (�=�)]
�(1 + n)

; (A12)

where 0 < �=� < n + 1, p 6= 0, q 6= 0, �(�) is the gamma function with �(x) =
(x� 1)�(x� 1) and �(1=2) =

p
�.

Consider the variable Y = Za+ b with density

h (y) =

8>>><>>>:
c

�
1 + 1

��2

�
y
1��

�2��(�+1)=2
if y � 0;

c

�
1 + 1

��2

�
y
1+�

�2��(�+1)=2
if y > 0:

We have

E(Y 5) = m5 =

Z 0

�1
y5c

 
1 +

1

� � 2

�
y

1� �

�2!�(�+1)=2
dy

+

Z 1

0
y5c

 
1 +

1

� � 2

�
y

1 + �

�2!�(�+1)=2
dy

= Il + Ir,

and on using (A12) we get

Il =

Z 0

�1
y5c

 
1 +

1

� � 2

�
y

(1� �)

�2!�(�+1)=2
dy

= c(1� �)6
Z 0

�1
x5
�
1 +

x2

� � 2

��(�+1)=2
dx

= �c(1� �)6(� � 2)3�[(� � 5)=2]
�[(� + 1)=2]

= �8c(1� �)6 (� � 2)3
(� � 1)(� � 3)(� � 5) ;

where we use the change of variable x = y=(1 � �) in the �rst step. Similarly, Ir =
8c(1+ �)6(� � 2)3=[(� � 1)(� � 3)(� � 5)] and m5 = 8c(� � 2)3[(1+ �)6� (1� �)6]=[(� �
1)(� � 3)(� � 5)]. We then have

E
�
Z5
�
=
E(Y � a)5

b5
=
m5 + 4a

5 � 5am4 � 10a3m2 + 10a
2m3

b5
:
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Table A1: Proportions of cases when the ML estimator did not converge to a valid point

or when the indicated approximation failed. The reported numbers are maxima taken

over the considered con�dence levels and horizons.

� = :4 � = :8 � = :89

Root-k G-C S-W Sim Root-k G-C S-W Sim Root-k G-C S-W Sim

T = 500


 = 0 0.016 0.016 0.016 0.016 0.001 0.001 0.001 0.001 0.074 0.074 0.074 0.074


 = 0:1 0.012 0.011 0.011 0.011 0.008 0.008 0.012 0.008 0.111 0.111 0.111 0.111


 = 0:2 0.017 0.017 0.048 0.017 0.013 0.013 0.018 0.013 0.176 0.177 0.176 0.176

T = 1000


 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.039 0.039 0.039


 = 0:1 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000 0.056 0.056 0.056 0.056


 = 0:2 0.008 0.007 0.009 0.007 0.001 0.006 0.002 0.012 0.085 0.090 0.086 0.100
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Table A2: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = !+0:1y
2
t�1 +0:4ht�1. MSE is the mean square error and EAV is the

average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.0011 0.1199 0.0744 -0.0178 0.3038 0.1487 -0.1385 0.2037 0.1169 -0.1560 0.4974 0.2339

G-C -0.0016 0.0420 0.0438 -0.0050 0.0747 0.0784 0.0091 0.0924 0.0948 0.0085 0.1507 0.1616

S-W -0.0027 0.0416 0.0443 -0.0052 0.0744 0.0794 -0.0062 0.0830 0.0879 -0.0015 0.1418 0.1541

Sim -0.0069 0.0437 0.1017 -0.0108 0.0774 0.1531 -0.0129 0.0880 0.0996 -0.0104 0.1481 0.1756

T = 1000

Root-k 0.0035 0.0727 0.0362 -0.0114 0.2031 0.0723 -0.1330 0.1282 0.0569 -0.1484 0.3375 0.1137

G-C 0.0055 0.0214 0.0213 0.0050 0.0363 0.0372 0.0146 0.0433 0.0445 0.0151 0.0695 0.0740

S-W 0.0027 0.0213 0.0215 0.0027 0.0363 0.0375 -0.0029 0.0407 0.0419 0.0022 0.0673 0.0715

Sim 0.0017 0.0219 0.0347 0.0018 0.0379 0.0672 -0.0055 0.0416 0.0437 -0.0012 0.0698 0.0741

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.2067 0.2756 0.1487 -0.2245 0.6516 0.2975 -0.4261 0.4825 0.1952 -0.4414 0.9796 0.3904

G-C 0.0288 0.1430 0.1469 0.0274 0.2194 0.2392 0.1364 0.3947 0.3974 0.1192 0.5137 0.5771

S-W -0.0072 0.1154 0.1223 0.0025 0.1943 0.2127 -0.0129 0.2127 0.2277 0.0068 0.3405 0.3784

Sim -0.0154 0.1221 0.1798 -0.0103 0.2034 0.3564 -0.0215 0.2295 0.2622 -0.0038 0.3615 0.4422

T = 1000

Root-k -0.2006 0.1793 0.0723 -0.2161 0.4476 0.1446 -0.4192 0.3543 0.0949 -0.4319 0.7102 0.1899

G-C 0.0316 0.0647 0.0668 0.0305 0.0986 0.1067 0.1236 0.1722 0.1737 0.1010 0.2168 0.2374

S-W -0.0044 0.0565 0.0582 0.0046 0.0916 0.0983 -0.0153 0.1025 0.1065 -0.0001 0.1592 0.1715

Sim -0.0081 0.0579 0.0804 -0.0024 0.0943 0.1702 -0.0191 0.1063 0.1123 -0.0057 0.1671 0.1793
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Table A3: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = !+0:05y
2
t�1+0:4ht�1+0:11(yt�1 < 0)y

2
t�1. MSE is the mean square

error and EAV is the average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.0838 0.1872 0.1097 -0.1350 0.4496 0.2194 -0.3367 0.3904 0.1725 -0.4266 0.8522 0.3451

G-C 0.0176 0.0716 0.0729 0.0181 0.1215 0.1247 0.1072 0.2598 0.3028 0.1487 0.4707 0.5528

S-W 0.0156 0.0697 0.0698 0.0188 0.1179 0.1184 -0.0124 0.1599 0.1658 0.0026 0.2759 0.2982

Sim -0.0155 0.0665 0.1029 -0.0162 0.1120 0.2201 -0.0341 0.1572 0.1607 -0.0218 0.2689 0.2823

T = 1000

Root-k -0.0686 0.0971 0.0535 -0.1134 0.2789 0.1069 -0.3175 0.2369 0.0841 -0.3994 0.5688 0.1681

G-C 0.0356 0.0324 0.0342 0.0397 0.0541 0.0564 0.1192 0.1226 0.1301 0.1453 0.2085 0.2197

S-W 0.0365 0.0324 0.0318 0.0459 0.0554 0.0527 0.0133 0.0718 0.0756 0.0287 0.1268 0.1342

Sim 0.0036 0.0282 0.0442 0.0070 0.0483 0.0834 -0.0007 0.0680 0.0766 0.0115 0.1208 0.1305

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.4669 0.5678 0.2195 -0.5792 1.1866 0.4389 -0.8450 1.1638 0.2880 -0.9896 1.9949 0.5761

G-C 0.0504 0.2971 0.3325 0.0746 0.5136 0.5866 0.1843 0.6975 0.7549 0.2678 1.2226 1.3603

S-W -0.0217 0.2353 0.2453 0.0007 0.4081 0.4494 -0.0880 0.4487 0.4903 -0.0515 0.7757 0.9147

Sim -0.0442 0.2328 0.2990 -0.0274 0.3978 0.6056 -0.0664 0.4847 0.5137 -0.0239 0.8356 0.9082

T = 1000

Root-k -0.4451 0.3673 0.1069 -0.5486 0.8183 0.2139 -0.8199 0.8825 0.1403 -0.9644 1.5962 0.2807

G-C 0.0787 0.1343 0.1498 0.0955 0.2270 0.2507 0.2250 0.3690 0.3755 0.2835 0.6486 0.6632

S-W 0.0079 0.1058 0.1122 0.0282 0.1872 0.2034 -0.0583 0.2034 0.2218 -0.0357 0.3529 0.4087

Sim -0.0025 0.1011 0.1398 0.0133 0.1798 0.2649 -0.0087 0.2170 0.2467 0.0235 0.3855 0.4247
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Table A4: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = ! + 0:4ht�1 + 0:21(yt�1 < 0)y2t�1. MSE is the mean square error and

EAV is the average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.1550 0.1923 0.1061 -0.2367 0.5305 0.2122 -0.5240 0.5183 0.1669 -0.6903 1.1974 0.3338

G-C 0.0477 0.0711 0.0806 0.0560 0.1250 0.1394 0.2882 0.4914 0.5593 0.3983 0.9888 1.1183

S-W 0.0455 0.0659 0.0709 0.0596 0.1166 0.1222 0.0134 0.1689 0.1904 0.0463 0.3209 0.3637

Sim -0.0137 0.0603 0.1004 -0.0099 0.1056 0.2191 -0.0321 0.1630 0.1866 -0.0133 0.2980 0.3359

T = 1000

Root-k -0.1521 0.1403 0.0570 -0.2310 0.4246 0.1140 -0.5204 0.4339 0.0896 -0.6835 1.0253 0.1792

G-C 0.0579 0.0385 0.0389 0.0681 0.0637 0.0655 0.2778 0.2611 0.2286 0.3516 0.4522 0.4170

S-W 0.0565 0.0367 0.0346 0.0734 0.0614 0.0581 0.0222 0.0863 0.0902 0.0470 0.1548 0.1704

Sim -0.0030 0.0307 0.0491 0.0028 0.0514 0.1001 -0.0098 0.0804 0.0906 0.0054 0.1422 0.1596

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.7145 0.8124 0.2123 -0.9268 1.7687 0.4246 -1.2594 1.9530 0.2786 -1.5780 3.6402 0.5573

G-C 0.1230 0.3903 0.4758 0.1865 0.7622 0.9170 0.2453 0.7538 0.8012 0.4029 1.5126 1.7512

S-W 0.0069 0.2560 0.2884 0.0533 0.4946 0.5656 -0.0916 0.5463 0.6246 -0.0280 1.0632 1.2839

Sim -0.0421 0.2466 0.3424 -0.0202 0.4505 0.7434 -0.0635 0.5694 0.6528 -0.0129 1.0621 1.2116

T = 1000

Root-k -0.7105 0.7044 0.1140 -0.9194 1.5472 0.2279 -1.2550 1.8076 0.1496 -1.5695 3.3420 0.2686

G-C 0.1327 0.1923 0.2091 0.1751 0.3377 0.3779 0.3256 0.4776 0.4153 0.4853 0.9736 0.8606

S-W 0.0160 0.1301 0.1361 0.0491 0.2352 0.2652 -0.0913 0.2765 0.2866 -0.0605 0.4948 0.5834

Sim -0.0145 0.1209 0.1696 0.0048 0.2130 0.3516 -0.0212 0.2766 0.3143 0.0151 0.4975 0.5728
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Table A5: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = !+0:1y
2
t�1 +0:8ht�1. MSE is the mean square error and EAV is the

average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k 0.0109 0.1028 0.0831 0.0070 0.2943 0.1661 -0.1884 0.1876 0.1306 -0.2928 0.5099 0.2613

G-C -0.0044 0.0813 0.0818 -0.0030 0.1737 0.1740 0.0180 0.1662 0.1672 0.0242 0.3682 0.3809

S-W -0.0075 0.0832 0.0813 -0.0079 0.1759 0.1729 -0.0184 0.1574 0.1538 -0.0314 0.3417 0.3417

Sim -0.0067 0.0811 0.0950 -0.0090 0.1739 0.2285 -0.0157 0.1543 0.1617 -0.0328 0.3393 0.3540

T = 1000

Root-k 0.0182 0.0495 0.0388 0.0172 0.1780 0.0775 -0.1792 0.1014 0.0610 -0.2800 0.3230 0.1219

G-C 0.0055 0.0367 0.0390 0.0104 0.0782 0.0838 0.0309 0.0745 0.0792 0.0473 0.1666 0.1807

S-W 0.0009 0.0365 0.0388 0.0036 0.0776 0.0831 -0.0053 0.0690 0.0734 -0.0088 0.1515 0.1640

Sim 0.0028 0.0368 0.0464 0.0044 0.0795 0.1155 -0.0008 0.0695 0.0751 -0.0073 0.1550 0.1669

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.2895 0.2741 0.1662 -0.4416 0.7194 0.3323 -0.6028 0.6029 0.2181 -0.9204 1.4810 0.4362

G-C 0.0540 0.2519 0.2527 0.0798 0.5654 0.5988 0.2730 0.6877 0.6274 0.3881 1.5960 1.5810

S-W -0.0269 0.2143 0.2090 -0.0442 0.4660 0.4694 -0.0319 0.3645 0.3588 -0.0725 0.8212 0.8378

Sim -0.0202 0.2117 0.2439 -0.0444 0.4656 0.5897 -0.0297 0.3627 0.3798 -0.0770 0.8245 0.8724

T = 1000

Root-k -0.2791 0.1635 0.0775 -0.4271 0.4798 0.1551 -0.5909 0.4545 0.1018 -0.9036 1.1606 0.2035

G-C 0.0663 0.1127 0.1172 0.1049 0.2564 0.2760 0.2824 0.3416 0.2901 0.4249 0.8170 0.7314

S-W -0.0108 0.0942 0.0998 -0.0153 0.2065 0.2253 -0.0111 0.1604 0.1706 -0.0292 0.3672 0.3996

Sim -0.0018 0.0955 0.1162 -0.0118 0.2127 0.2907 -0.0064 0.1631 0.1767 -0.0298 0.3805 0.4101
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Table A6: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = ! + 0:8ht�1 + 0:21(yt�1 < 0)y2t�1. MSE is the mean square error and

EAV is the average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.2107 0.1833 0.1250 -0.4060 0.6224 0.2500 -0.7258 0.7103 0.1966 -1.3422 2.3136 0.3932

G-C 0.0863 0.1554 0.1625 0.1628 0.3866 0.3752 0.6075 1.2142 1.0112 1.5996 6.4715 3.7075

S-W 0.0678 0.1431 0.1495 0.0945 0.3237 0.3209 0.0306 0.3088 0.3456 0.0573 0.8202 0.8742

Sim -0.0010 0.1328 0.1537 -0.0045 0.3022 0.3967 -0.0041 0.3045 0.3436 -0.0158 0.7958 0.8549

T = 1000

Root-k -0.2093 0.1110 0.0585 -0.4046 0.4602 0.1170 -0.7237 0.6019 0.0920 -1.3397 2.0751 0.1840

G-C 0.0857 0.0716 0.0753 0.1686 0.1870 0.1741 0.5643 0.6909 0.4118 1.5103 4.1453 1.8562

S-W 0.0668 0.0645 0.0694 0.1002 0.1464 0.1485 0.0292 0.1397 0.1606 0.0643 0.3725 0.4050

Sim -0.0002 0.0572 0.0742 0.0008 0.1324 0.1707 0.0003 0.1351 0.1601 -0.0009 0.3621 0.3976

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.9982 1.2252 0.2501 -1.8291 3.9333 0.5001 -1.7362 3.3279 0.3282 -3.1880 10.7864 0.6564

G-C 0.2453 0.7030 0.7574 0.6614 2.9366 2.5159 0.2630 0.9006 0.8973 -0.5548 3.8417 2.6051

S-W 0.0170 0.4457 0.4985 0.0479 1.2109 1.2534 -0.0789 0.8390 0.9629 -0.0686 2.6008 2.6264

Sim -0.0055 0.4471 0.6427 -0.0221 1.1853 2.2368 -0.0070 0.8701 1.0008 -0.0311 2.5906 2.5881

T = 1000

Root-k -0.9955 1.0886 0.1170 -1.8261 3.6370 0.2341 -1.7330 3.1595 0.1536 -3.1839 10.4207 0.3072

G-C 0.2342 0.3353 0.3322 0.6133 1.4107 1.1900 0.3805 0.4990 0.3990 -0.0732 0.8876 1.1909

S-W 0.0162 0.2033 0.2319 0.0578 0.5530 0.6053 -0.0822 0.3934 0.4457 -0.0642 1.1934 1.3070

Sim 0.0010 0.1980 0.2849 -0.0017 0.5413 1.1025 0.0045 0.3937 0.4653 -0.0016 1.1907 1.2980
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Table A7: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = ! + 0:1y2t�1 + 0:89ht�1. MSE is the mean square error and EAV is

the average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.0115 0.0560 0.0689 -0.0393 0.1260 0.1378 -0.2017 0.1257 0.1083 -0.3758 0.3127 0.2167

G-C -0.0211 0.0669 0.0822 -0.0346 0.1750 0.2081 0.0039 0.1290 0.1633 0.0157 0.3603 0.4520

S-W -0.0257 0.0668 0.0818 -0.0428 0.1747 0.2066 -0.0351 0.1221 0.1522 -0.0667 0.3286 0.4029

Sim -0.0234 0.0675 0.0873 -0.0395 0.1768 0.2492 -0.0281 0.1234 0.1551 -0.0555 0.3339 0.4119

T = 1000

Root-k 0.0198 0.0330 0.0346 0.0102 0.0842 0.0692 -0.1703 0.0705 0.0544 -0.3268 0.1933 0.1089

G-C 0.0120 0.0335 0.0424 0.0203 0.0860 0.1103 0.0441 0.0693 0.0835 0.0881 0.1977 0.2352

S-W 0.0073 0.0331 0.0422 0.0114 0.0846 0.1095 0.0058 0.0611 0.0783 0.0055 0.1621 0.2121

Sim 0.0100 0.0336 0.0445 0.0155 0.0865 0.1272 0.0121 0.0612 0.0799 0.0173 0.1693 0.2177

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.2996 0.2002 0.1378 -0.5474 0.5160 0.2756 -0.5926 0.5135 0.1809 -1.0700 1.4624 0.3618

G-C 0.0402 0.1922 0.2389 0.0987 0.5776 0.7176 0.2730 0.5406 0.5452 0.5524 1.8834 1.6727

S-W -0.0443 0.1655 0.2048 -0.0863 0.4442 0.5483 -0.0412 0.2658 0.3358 -0.0943 0.7568 0.9510

Sim -0.0305 0.1679 0.2207 -0.0652 0.4562 0.6196 -0.0327 0.2701 0.3459 -0.0790 0.7804 0.9867

T = 1000

Root-k -0.2670 0.1245 0.0692 -0.4964 0.3522 0.1385 -0.5656 0.4119 0.0909 -1.0291 1.2260 0.1818

G-C 0.0842 0.1087 0.1205 0.1793 0.3421 0.3620 0.3224 0.3790 0.2685 0.6703 1.4774 0.8792

S-W 0.0020 0.0827 0.1052 -0.0025 0.2216 0.2883 0.0110 0.1378 0.1713 0.0070 0.3908 0.4680

Sim 0.0143 0.0837 0.1158 0.0204 0.2362 0.3253 0.0168 0.1379 0.1770 0.0203 0.4172 0.4872
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Table A8: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = !+0:1y
2
t�1+0:89ht�1+0:11(yt�1 < 0)y

2
t�1. MSE is the mean square

error and EAV is the average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.1132 0.0765 0.0902 -0.2594 0.1970 0.1803 -0.4373 0.3048 0.1418 -0.8930 1.0280 0.2835

G-C 0.0187 0.0835 0.1229 0.0478 0.2206 0.3259 0.1861 0.3020 0.3889 0.5968 1.5351 1.6512

S-W 0.0103 0.0815 0.1176 0.0130 0.2059 0.2989 -0.0237 0.1645 0.2394 -0.0461 0.4612 0.6861

Sim -0.0218 0.0778 0.1148 -0.0434 0.1978 0.3194 -0.0301 0.1619 0.2431 -0.0657 0.4546 0.6858

T = 1000

Root-k -0.1040 0.0490 0.0519 -0.2450 0.1373 0.1038 -0.4406 0.2868 0.0816 -0.9030 1.0280 0.1632

G-C 0.0363 0.0491 0.0697 0.0886 0.1341 0.1864 0.2058 0.1900 0.1951 0.6565 1.2642 0.8725

S-W 0.0280 0.0479 0.0675 0.0528 0.1213 0.1740 -0.0014 0.0888 0.1327 0.0083 0.2519 0.3827

Sim -0.0056 0.0459 0.0697 -0.0087 0.1120 0.1847 -0.0076 0.0891 0.1350 -0.0113 0.2498 0.3840

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.6096 0.5333 0.1803 -1.2260 1.8457 0.3607 -1.0768 1.4609 0.2367 -2.1433 5.3391 0.4734

G-C 0.0921 0.2994 0.4251 0.2775 1.1214 1.5135 0.2730 0.6161 0.7021 0.2138 1.2817 1.6140

S-W -0.0421 0.2317 0.3325 -0.0770 0.6711 0.9824 -0.1008 0.3977 0.5697 -0.1792 1.2675 1.8301

Sim -0.0360 0.2321 0.3544 -0.0770 0.6750 1.0788 -0.0416 0.4118 0.6136 -0.1021 1.3057 1.8294

T = 1000

Root-k -0.6182 0.5312 0.1038 -1.2471 1.9229 0.2075 -1.1066 1.5959 0.1362 -2.1710 5.4702 0.2724

G-C 0.1220 0.1709 0.2238 0.3507 0.7290 0.7718 0.3375 0.4355 0.3927 0.4337 0.9015 0.8487

S-W -0.0157 0.1233 0.1826 -0.0123 0.3606 0.5431 -0.0722 0.2079 0.3043 -0.1011 0.6726 0.9793

Sim -0.0094 0.1237 0.1953 -0.0102 0.3668 0.5828 -0.0083 0.2178 0.3290 -0.0135 0.7084 1.0300

30



Table A9: Simulations results for data generated according to yt =
p
ht"t, where "t �

nid(0; 1) and ht = !+0:89ht�1+0:21(yt�1 < 0)y2t�1. MSE is the mean square error and

EAV is the average estimated asymptotic variance.

V aR0:95T;k ES0:95T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.2120 0.1029 0.0798 -0.4592 0.3233 0.1596 -0.6426 0.5654 0.1255 -1.3467 2.1975 0.2509

G-C 0.0362 0.0921 0.1233 0.0945 0.2534 0.3400 0.4337 0.6265 0.5515 1.5272 5.2704 2.9383

S-W 0.0180 0.0849 0.1145 0.0126 0.2053 0.2928 -0.0266 0.1839 0.2542 -0.0508 0.5295 0.6991

Sim -0.0326 0.0797 0.1163 -0.0608 0.1999 0.3250 -0.0458 0.1778 0.2536 -0.0907 0.5219 0.6952

T = 1000

Root-k -0.2061 0.0955 0.0566 -0.4515 0.3160 0.1132 -0.6570 0.6901 0.0890 -1.3453 2.1729 0.1780

G-C 0.0551 0.0515 0.0813 0.1396 0.1528 0.2229 0.4822 0.6784 0.3435 1.6525 5.0266 1.6592

S-W 0.0358 0.0490 0.0772 0.0510 0.1197 0.1964 -0.0031 0.0930 0.1626 0.0034 0.2669 0.3894

Sim -0.0179 0.0481 0.0739 -0.0289 0.1152 0.2004 -0.0241 0.0940 0.1626 -0.0393 0.2653 0.3910

V aR0:99T;k ES0:99T;k

k = 5 k = 10 k = 5 k = 10

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

T = 500

Root-k -0.8730 1.0125 0.1596 -1.8145 3.9774 0.3192 -1.4776 2.8100 0.2095 -3.0310 10.8171 0.4189

G-C 0.1408 0.4116 0.4563 0.5559 2.3048 1.7812 0.1683 0.5053 0.5514 -1.0283 3.2347 1.9745

S-W -0.0479 0.2668 0.3608 -0.0844 0.7946 0.9891 -0.1337 0.4830 0.6028 -0.2150 1.3649 2.0271

Sim -0.0533 0.2646 0.4266 -0.1061 0.8003 2.1882 -0.0662 0.4831 0.6252 -0.1596 1.3606 2.0313

T = 1000

Root-k -0.8986 1.2706 0.1132 -1.8223 4.0235 0.2264 -1.4904 2.9020 0.1486 -3.0539 10.9486 0.2971

G-C 0.1755 0.2347 0.3026 0.5999 1.3016 0.9695 0.2655 0.3389 0.2949 -0.7958 1.7170 0.9450

S-W -0.0217 0.1316 0.2278 -0.0199 0.3914 0.5297 -0.1021 0.2414 0.4031 -0.1153 0.8276 1.0569

Sim -0.0293 0.1327 0.2678 -0.0427 0.3975 1.4240 -0.0309 0.2392 0.4202 -0.0539 0.8587 1.0810
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Table A10: Simulation results for data generated according to yt =
p
ht"t, where "t is

skew-t distributed with � = �0:2 and � = 8 and ht = !+0:05y2t�1+0:8ht�1+0:11(yt�1 <
0)y2t�1. The sample size and the horizon is set to 1000 observations and 5 periods,

respectively. MSE is the mean square error and EAV is the average estimated asymptotic

variance. The averages are for the true values.

V aR0:95T;k ES0:95T;k

Average 4.8503 6.8472

QML ML QML ML

Method Bias MSE EAV Bias MSE EAV Bias MSE EAV Bias MSE EAV

Root-k -0.1992 0.1715 0.1703 0.0356 0.1675 0.0473 -1.0146 1.1805 0.2428 -0.0787 0.3552 0.0982

G-C -0.0602 0.1127 0.1400 0.1964 0.1640 0.0667 -0.3302 0.4342 0.4365 1.9145 6.4573 2.8491

S-W -0.0676 0.1113 0.1275 0.0969 0.1084 0.0965 -0.5536 0.5257 0.2214 0.1070 0.3099 0.1507

Sim -0.1077 0.1142 0.1479 0.0175 0.0922 0.1158 -0.5647 0.5364 0.2698 0.0171 0.2667 0.2046
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