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Abstract

This thesis comprises four papers concerning modelling of financial count data. Paper [1], [2]
and [3] advance the integer-valued moving average model (INMA), a special case of integer-
valued autoregressive moving average (INARMA) model class, and apply the models to the
number of stock transactions in intra-day data. Paper [4] focuses on modelling the long
memory property of time series of count data and on applying the model in a financial
setting.
Paper [1] advances the INMA model to model the number of transactions in stocks in

intra-day data. The conditional mean and variance properties are discussed and model
extensions to include, e.g., explanatory variables are offered. Least squares and generalized
method of moment estimators are presented. In a small Monte Carlo study a feasible least
squares estimator comes out as the best choice. Empirically we find support for the use of
long-lag moving average models in a Swedish stock series. There is evidence of asymmetric
effects of news about prices on the number of transactions.
Paper [2] introduces a bivariate integer-valued moving average (BINMA) model and

applies the BINMA model to the number of stock transactions in intra-day data. The
BINMA model allows for both positive and negative correlations between the count data
series. The study shows that the correlation between series in the BINMA model is always
smaller than one in an absolute sense. The conditional mean, variance and covariance are
given. Model extensions to include explanatory variables are suggested. Using the BINMA
model for AstraZeneca and Ericsson B it is found that there is positive correlation between
the stock transactions series. Empirically, we find support for the use of long-lag bivariate
moving average models for the two series.
Paper [3] introduces a vector integer-valued moving average (VINMA) model. The

VINMA model allows for both positive and negative correlations between the counts. The
conditional and unconditional first and second order moments are obtained. The CLS and
FGLS estimators are discussed. The model is capable of capturing the covariance between
and within intra-day time series of transaction frequency data due to macroeconomic news
and news related to a specific stock. Empirically, it is found that the spillover effect from
Ericsson B to AstraZeneca is larger than that from AstraZeneca to Ericsson B.
Paper [4] develops models to account for the long memory property in a count data

framework and applies the models to high frequency stock transactions data. The uncon-
ditional and conditional first and second order moments are given. The CLS and FGLS
estimators are discussed. In its empirical application to two stock series for AstraZeneca
and Ericsson B, we find that both series have a fractional integration property.

Key words: Count data, Intra-day, High frequency, Time series, Estimation, Long memory,
Finance.
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1 Introduction

What determines the price of a good is one of the most important questions
in economics. If a household or an individual wishes to buy a good at a price
and another individual agrees to sell the good at the same price we can say
that the price is determined through the mutual agreement between the buyer
and the seller. Since many people are interested in buying the same type
of products at different prices and several suppliers or sellers are interested in
selling the products at different prices the question of how market clearing price
is determined arises. The market clearing price refers to the price at which the
quantity demanded for a good is the same as the quantity supplied. According
to classical economic theory, the market clearing price or equilibrium price is
determined through the intersection of demand and supply curves.
The studies of market microstructure depart from the classical economic

theory of price determination or Walrasian auctioneer approach, i.e. the auc-
tioneer aggregates demands and supplies of a good to find a market-clearing
price. Some early studies on price formation, e.g., Working (1953), not only
concern the matching of demand and supply curves in equilibrium but also focus
on the underlying trading mechanism. Demsetz (1968) focuses on transactions
costs for the determination of prices in the securities market and analyzes the
importance of the time dimension of demand and supply in the formation of
market prices. The availability of high frequency data specially in stock and
currency markets has spurred interest in studying market mechanisms or mar-
ket microstructures. For stock and currency markets, the market microstruc-
ture studies concern, for example, the impact of transactions, bid-ask spreads,
volume and time between transactions (duration) on price formation. The
studies also concern how news, rumors, etc., are interpreted and used by the
actors in trading.
A transaction or a trade takes place when a buyer and a seller agree to

exchange a volume of stocks at a given price. A transaction is impounded
with information such as volume, price, spread, i.e., the difference between bid
and ask prices. The time between transactions and numbers of transactions
or trades are related due to the nature of these kinds of data. The more time
elapses between successive transactions the fewer trades take place in a fixed
time interval. Hence, the trading intensity and the durations can be seen as
inversely related. The trading intensity and durations have played a central
roll in understanding price processes in the market microstructure research
during the last two decades. Diamond and Verrecchia (1987) show that a low
trading intensity implies the presence of bad news, while Easley and O’Harra
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(1992) shows that a low trading intensity implies no news. Engle (2000) finds
that longer durations are associated with lower price volatilities. The stock
transactions data are counts for a fixed interval of time. Until now there is
no study of pure time series models for count data in this area and this thesis
contributes to filling this gap.
A time series of count data is an integer-valued non-negative sequence of

count observations observed at equidistant instants of time. There is a grow-
ing literature of various aspect of how to model, estimate and use such data.
Jacobs and Lewis (1978ab, 1983) develop discrete ARMA (DARMA) models
that introduce time dependence through a mixture process. McKenzie (1986)
and Al-Osh and Alzaid (1987) introduce independently the integer-valued au-
toregressive moving average (INARMA) model for pure time series data, while
Brännäs (1995) extends the INAR model to incorporate explanatory variables.
The regression analysis of count data is relatively new, though the statistical
analysis of count data has a long and rich history. The increased availability
of count data in recent years has stimulated the development of models for
both panel and time series count data. For reviews of these and other mod-
els, see, e.g., Cameron and Trivedi (1998, ch. 7) and McKenzie (2003). In
INARMA, the parameters are interpreted as probabilities and hence restricted
to unit intervals. Some empirical applications of INAR are due to Blundell,
Griffith and Windmeijer (2002), who studied the number of patents in firms,
Rudholm (2001), who studied competition in the generic pharmaceuticals mar-
ket, and Brännäs, Hellström and Nordström (2002), who estimated a nonlinear
INMA(1) model for tourism demand.
In this thesis, we focus on advancing and employing an integer-valued mov-

ing average model of order q [INMA(q)], i.e. a special case of the INARMA
model class, for analyzing high frequency financial data in the form of stock
transactions data aggregated over one or five minute intervals of time. Later,
we propose a bivariate integer-valued moving average (BINMA) model, a vec-
tor integer-valued moving average (VINMA) model and an integer-valued au-
toregressive fractionally integrated moving average (INARFIMA) model. The
BINMA model is developed to capture the covariance between stock transac-
tions data due to macroeconomic news or rumors, while the VINMA Model is
more general than the BINMA model and enables the study of the spillover
effects of news from one stock to other. Macroeconomic news refer to the news
that may have impact on the stock markets as a whole and necessarily on a
particular stocks. For example, news related to interest rates, unemployment
statistics for a country, etc. may influence all stocks. Rumors are the informa-
tion related to, e.g., macroeconomic news or news related to a particular stock
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that spread unofficially. The INARFIMA model is developed to study the long
memory property of high frequency count data. The models introduced in this
thesis can also be used to measure the reaction times to shocks or news. A
description of high frequency data, the INMA model, the BINMA, VINMA
model, long memory and the INARFIMA model is given below.

2 High Frequency Data

Financial market data are tick-by-tick data. Each tick represents a change in,
e.g., a quote or corresponds to a transaction. For a liquid stock or a currency,
these tick-by-tick data generate high frequency data. Such financial data are
also characterized by lack of synchronization, in the sense that only rarely is
there more than one transaction at a given instant of time. For reviews of
high frequency data and their characteristics, see, e.g., Tsay (2002, ch. 5),
Dacorogna et al. (2001) and Gourieroux and Jasiak (2001, ch. 14). The access
to high frequency data is getting less and less of a problem for individual
researchers and costs are low. As a consequence, many issues related to the
trading process and the market microstructure are under study.
Transactions data are collected from an electronic limited order book for

each stock. Incoming orders are ranked according to price and time of entry
and are continuously updated. Hence, new incoming buy and sell orders and
the automatic match of the buy and sell orders are recorded. The automatic
match of a buy and a sell order generates a transaction. In Figure 1, we see that
the transactions in the two stocks are not synchronized, i.e. the transactions
appear at different points of time. The counts in the intervals are the number of
transactions for corresponding intervals. In papers [1] and [4] a one minute time
scale is employed and for papers [2] and [3] a five minute scale. The collection
of the number of transactions over a time period makes up a time series of
count data. The time series of transactions or count data are synchronized
between stocks in the sense that all the numbers of transactions are aggregated
transactions over the same time interval. An example of real transactions data
over a 30 minute period for the stock AstraZeneca is exhibited in Figure 2.
Each observation number corresponds to one minute of time. This type of data
series comprises frequent zero frequencies and motivates a count data model.
The time series of transactions or count data may have a long memory prop-

erty. The long memory implies the long range dependence in the time series of
counts, i.e. the present information has a persistent impact on future counts.
Note that the long memory property is related to the sampling frequency of
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Figure 1: An illustration of how transactions data are generated. The black
triangles and circles represent transactions for stock 1 and stock 2, respectively,
while the white triangles and circles represent all other activities in an order
book. The stock counts record the number of black triangles/circles falling into
a time interval, i.e. falling between vertical lines.
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Figure 2: The number of transactions data over minute long intervals for 30
minutes of trading in AstraZeneca.
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Figure 3: The autocorrelation function for AstraZeneca as an illustration of
long range dependence of long memory.

a time series. A manifest long memory may be shorter than one hour if ob-
servations are recorded every minute, while stretching over decades for annual
data. The time series containing long memory has a very slowly decaying auto-
correlation function. The autocorrelation function for stock transactions data
aggregated over one minute interval of time for AstraZeneca is illustrated in
Figure 3. The autocorrelation function decays sharply in the first few lags but
decays very slowly thereafter. Hence, we may expect long memory in stock
transactions data for AstraZeneca. Models for long memory and continuous
variable time series are not appropriate for integer-valued counts. Therefore,
long memory models developed for continuous variables are not automatically
of relevance neither with respect to interpretation nor to efficient estimation.

For this thesis the Ecovision system is utilized. Daily downloads are stored
to files and count data are calculated from the tick-by-tick data using Matlab
programs.
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3 The INMA, BINMA and VINMA Models

The INMA model is a special case of the INARMA model. The INMA model of
order q, INMA(q), is introduced by Al-Osh and Alzaid (1988) and in a slightly
different form by McKenzie (1988). The single thing that most visibly makes
the INMA model different from its continuous variable MA counterpart is that
multiplication of variables with real valued parameters is no longer a viable
operation, when the result is to be integer-valued. Multiplication is therefore
replaced by the binomial thinning operator

α ◦ u =
uX
i=1

vi, (1)

where {vi}ui=1 is an iid sequence of 0− 1 random variables, such that Pr(vi =
1) = α = 1 − Pr(vi = 0). Conditionally on the integer-valued u, α ◦ u is
binomially distributed with E(α ◦ u|u) = αu and V (α ◦ u|u) = α(1 − α)u.
Unconditionally it holds that E(α ◦ u) = αλ, where E(u) = λ, and V (α ◦ u) =
α2σ2+α(1−α)λ, where V (u) = σ2. Obviously, α ◦ u takes an integer-value in
the interval [0, u].
Employing this binomial thinning operator, an INARMA(p, q) model can

be written

yt − α1 ◦ yt−1 − . . .− αp ◦ yt−p = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q. (2a)

with αj , βi ∈ [0, 1], j = 1, . . . , p − 1 and i = 1, . . . , q − 1, and αp, βq ∈ (0, 1].
Setting all αj = 0 we obtain the INARMA(q) model

yt = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q (2b)

Brännäs and Hall (2001) discuss model generalizations and interpretations re-
sulting from different thinning operator structures, and an empirical study and
approaches to estimation are reported by Brännäs et al. (2002). McKenzie
(1988), Joe (1996), Jørgensen and Song (1998) and others stress exact dis-
tributional results for yt, while we emphasize in paper [1] only the first two
conditional and unconditional moments of the model. Moreover, we discuss
and introduce more flexible conditional mean and heteroskedasticity specifica-
tions for yt than implied by the above equation. There is an obvious connection
between the introduced count data model and the conditional duration model
of, e.g., Engle and Russell (1998) in the sense that long durations in a time
interval correspond to a small count and vice versa. Hence, a main use of the
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count data models discussed here is also one of measuring reaction times to
shocks or news.
In paper [2], we focus on the modelling of bivariate time series of count

data that are generated from stock transactions. The used data are aggregates
over five minutes intervals and computed from tick-by-tick data. One obvious
advantage of the introduced model over the conditional duration model is that
there is no synchronization problem between the time series.1 Hence, the spread
of shocks and news is more easily studied in the present framework. Moreover,
the bivariate count data models can easily be extended to multivariate models
without much complication. The introduced bivariate time series count data
model allows for negative correlation between the counts and the integer-value
property of counts is taken into account. The model is employed to capture
covariance between stock transactions time series and to measure the reaction
time for news or rumors. Moreover, this model is capable of capturing the
conditional heteroskedasticity.
In paper [3], we extend the INMAmodel to a vector INMA (VINMA) model.

The VINMA is more general than the BINMA model in paper [2] and enables
the study of the spillover effects of transactions from one stock to the other.
A large number of studies have considered the modelling of bivariate or mul-

tivariate count data assuming an underlying Poisson distribution (e.g., Gourier-
oux, Monfort and Trognon, 1984). Heinen and Rengifo (2003) introduce mul-
tivariate time series count data models based on the Poisson and the double
Poisson distribution. Other extensions to traditional count data regression
models are considered by, e.g., Brännäs and Brännäs (2004) and Rydberg and
Shephard (1999).

4 Long Memory and the INARFIMA Model

Hurst (1951, 1956) considered first the long memory phenomenon in time se-
ries. He explained the long term storage requirements of the Nile River. He
showed that the cumulated water flows in a year had a persistent impact on
the water flows in the later years. By employing fractional Brownian motion,
Mandelbrot and van Ness (1968) explain and advance the Hurst’s studies. In
analogy with Mandelbrot and van Ness (1968), Granger (1980), Granger and
Joyeux (1980) and Hosking (1981) develop Autoregressive Fractionally Inte-
grated Moving Average (ARFIMA) models to account for the long memory in

1For a bivariate duration model the durations for transactions typically start at different
times and as a consequence measuring the covariance between the series becomes intricate.
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time series data. According to Ding and Granger (1996), a number of other
processes can also have the long memory property. In a recent empirical study,
Bhardwaja and Swanson (2005) found strong evidence in favor of ARFIMA in
absolute, squared and log-squared stock index returns.
Granger and Joyeux (1980) and Hosking (1981) independently propose

ARFIMA processes to account for long memory in continuous variables. We
say that {yt, t = 1, 2, . . . , T} is an ARFIMA (0, d, 0) process if

(1− L)dyt = at (3)

where L is a lag operator and d is any real number. The {at} is a white noise
process of random variables with mean E(at) = 0 and variance V (at) = σ2a.
Employing binomial series expansion, we can write

(1− L)d = ∆d = 1−
∞X
i=1

(i− 1− d)!

i!(−d− 1)!L
i = 1−

∞X
i=1

Γ(i− d)

Γ(i+ 1)Γ(1− d)
Li (4)

and correspondingly

∆−d = 1 + dL+
1

2
d(1 + d)L2 +

1

6
d(1 + d)(2 + d)L3 − . . .

= 1 +
∞X
i=1

(i+ d− 1)!
i!(d− 1)! Li = 1 +

∞X
i=1

Γ(i+ d)

Γ(i+ 1)Γ(d)
Li (5)

where Γ(n + 1) = n! and i = 1, 2, . . .. The ∆d is needed for AR(∞) and the
∆−d is needed for MA(∞) representations of the ARFIMA (0, d, 0) model or for
more general ARFIMA(p, d, q) models. If d < 1/2, d 6= 0, the ARFIMA(0, d, 0)
process is called a long memory process, while the process has mean reversion
but is not covariance stationary when d > 1/2. A survey of the ARFIMA
literature can be found in Baillie (1996). Note, for instance, that the AR and
MA parameters of an ARFIMAmodel are less restricted than the corresponding
parameters of the INARFIMA model.
In paper [4], we focus on modelling the long memory property of time

series of count data and on applying the model in a financial setting. Com-
bining the ideas of the INARMA model (2a) with fractional integration is not
quite straightforward. Direct use of (4) or (5) will not give integer-values since
multiplying an integer-valued variable with a real-valued d can not produce an
integer-valued result and this alternative is hence ruled out. Instead, we depart
from the binomial expansion expression and propose in analogy with Granger
and Joyeux (1980) and Hosking (1981) INARFIMA models that accounts for
integer-valued counts and long memory. We apply the INARFIMA models to
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stock transactions data for AstraZeneca and Ericsson B. We found evidence for
long memory for the AstraZeneca series while the series for Ericsson B indicates
a process indicates a process that has a mean reversion property.

5 Summary of the Papers

Paper [1]: Integer-Valued Moving Average Modelling of the Number
of Transactions in Stocks

The integer-valued moving average model is advanced to model the number of
transactions in intra-day data of stocks. The conditional mean and variance
properties are discussed and model extensions to include, e.g., explanatory vari-
ables are offered. Least squares and generalized method of moment estimators
are presented. In a small Monte Carlo experiment we study the bias and MSE
properties of the CLS, FGLS and GMM estimators for finite-lag specifications,
when data is generated according to an infinite-lag INMA model. In addition,
we study the serial correlation properties of estimated models by the Ljung-
Box statistic as well as the properties of forecasts one and two steps ahead.
In this Monte Carlo study, the feasible least squares estimator comes out as
the best choice. However, the CLS estimator which is the simplest to use of
the three considered estimators is not far behind. The GMM performance is
weaker than that of the CLS estimator. It is also clear that the lag length
should be chosen large and that both under and overparameterization give rise
to detectable serial correlation.
In its practical implementation for the time series of the number of trans-

actions in Ericsson B, we found both promising and less advantageous features
of the model. There is evidence of asymmetric effects of news about prices
on the number of transactions. With the CLS estimator it was relatively easy
to model the conditional mean in a satisfactory way in terms of both inter-
pretation and residual properties. It was more difficult to obtain satisfactory
squared residual properties for the conditional variance specifications that were
tried. The FGLS estimator reversed this picture and we suggest that more em-
pirical research is needed on the interplay between the conditional mean and
heteroskedasticity specifications for count data. Depending on research inter-
est the conditional variance parameters are or are not of particular interest.
For studying reaction times to shocks or news it is the conditional mean that
matters, in much the same way as for conditional duration models. In addition,
the conditional variance has no direct ties to, e.g., risk measures included in,
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e.g., option values or portfolios.

Paper [2]: Bivariate Time Series Modelling of Financial Count Data

This study introduces a bivariate integer-valued moving average (BINMA)
model and applies the BINMA model to the number of stock transactions
in intra-day data. The BINMA model allows for both positive and negative
correlations between the count data series. The conditional mean, variance and
covariance are given. The study shows that the correlation between series in the
BINMA model is always smaller than one in an absolute sense. Applying the
BINMA model for the number of transactions in Ericsson B and AstraZeneca,
we find promising and less promising features of the model. The conditional
mean, variance and covariance have successfully been estimated. The stan-
dardized residuals based on FGLS are serially uncorrelated. But the model
could not eliminate the serial correlation in the squared standardized residual
series that is not of particular interest in this study. Further study is required
to eliminate such serial correlation. One way of eliminating serial correlation
may be to use extended model by letting, e.g., λj or σj be time-varying.

Paper [3]: A Vector Integer-Valued Moving Average Model for High
Frequency Financial Count Data

This paper introduces a Vector Integer-Valued Moving Average (VINMA) model.
The VINMA is developed to capture covariance between stock transactions time
series. The Model allows for both positive and negative correlation between
the count series and the integer-value property of counts is taken into account.
The model is capable of capturing the covariance between and within intra-day
time series of transaction frequency data due to macroeconomic news and news
related to a specific stock. The conditional and unconditional first and second
order moments are obtained. The CLS and FGLS estimators are discussed.
The FGLS estimator performs better than CLS in terms of eliminating serial
correlation. The VINMA model performs better than the BINMA of paper [3]
in terms of goodness of fit. Empirically, it is found that the spillover effect from
Ericsson B to AstraZeneca is larger than that from AstraZeneca to Ericsson B.

Paper [4]: Long Memory, Count Data, Time Series Modelling for
Financial Applications

This paper introduces a model to account for the long memory property in a
count data framework. The model emerges from the ARFIMA and INARMA
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model classes and hence the model is called INARFIMA. The unconditional
and conditional first and second order moments are given. Moreover, we in-
troduce another process by employing an idea introduced by Granger, Joyeux
and Hosking but in a different setting. The model is successfully applied to
estimate the fractional integration parameter for high frequency financial count
data for two stock series for Ericsson B and AstraZeneca.
In order to study residual properties for standardized residual we estimate

several INARFIMA models and truncated INMA models. The INMA(70) and
INMA(50) for Ericsson B and AstraZeneca, respectively, turns out to be the
best in terms of eliminating serial correlation for standardized residuals while
INARFIMA(0, δ, 0) comes in as second best for both series and the estimated
parameters are positive. The INARFIMA(0, δ, 0) is the most parsimonious
model in terms of number of parameters. For AstraZeneca, we find evidence of
long memory, while the estimated δ for Ericsson B indicates a process that has
a mean reversion property. CLS and FGLS estimators perform equally well in
terms of residual properties. We also find that the trading intensity increases
for both stocks when the macro-economic news or rumors break out and the
impact of the macro-economic news remains over a long period and fades away
very slowly with time. The reaction due to the macro-economic news on the
AstraZeneca series is faster than that of the Ericsson B series.
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1 Introduction

The paper focuses on modelling time series of the number of intra-day trans-
actions in stocks. Such count data time series typically take on small numbers
even for frequently traded stocks if the counts are recorded in short time in-
tervals of, for instance, one minute length. There is an obvious connection
between the current count data model and the conditional duration model of,
e.g., Engle and Russell (1998) in the sense that long durations in a time interval
correspond to a small count and vice versa. Hence, a main use of the count
data models discussed here is also one of measuring reaction times to shocks
or news. The relationship between durations (and indirectly counts) and the
price process is reviewed by Chiang and Wang (2004). In this context straight-
forward use of the Box-Jenkins methodology for identifying parsimonious time
series models raises fundamental questions about the resulting model specifi-
cation when we wish to adhere to the integer-valued or count data nature of
the number of transactions variable.
Previous models for the number of transactions or related variables within

the intra-day financial arena have departed from conventional count data re-
gression models or from extended model versions (e.g., Brännäs and Brännäs,
2004; Heinen and Rengifo, 2003). Here, we consider a different approach and
start from an integer-valued model corresponding to the conventional ARMA
class of Box and Jenkins (1970). An important difference between the con-
tinuous variable ARMA model and its corresponding integer-valued version
(INARMA) is that the latter contains parameters that are interpreted as prob-
abilities and then take on values in narrower intervals than do the parameters of
the ARMA model (e.g., McKenzie, 1986; Al-Osh and Alzaid, 1991; Joe, 1996;
Jørgensen and Song, 1998; McKenzie, 2003). This then may make model iden-
tification of an appropriate model by correlation methods (Box and Jenkins,
1970) less suitable. While for the ARMA class, specification searches aim at
models that leave no serial correlation and satisfy stationarity and invertibility
criteria, the INARMA specification should additionally have each parameter
estimate of lagged variables in the unit interval.
In this paper the empirical results indicate that long-lag INMA models sat-

isfy such restrictions, while mixed INARMA models do not. The INMA model
class has been studied by, e.g., Al-Osh and Alzaid (1988), McKenzie (1988)
and Brännäs and Hall (2001). As far as we are aware the only published, em-
pirical application is due to Brännäs, Hellström and Nordström (2002), who
estimated a nonlinear INMA(1) model for tourism demand. This model had
time dependent parameters that were functions of explanatory variables. The
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present empirical study is focused on a stock transaction series (Ericsson) reg-
istered at the order driven Stockholmsbörsen stock exchange and emphasizes
different specification issues.
The INMA model is introduced in Section 2, where we also give some mo-

ment results and discuss conditional heteroskedasticity. General expressions
for conditional and unconditional moments are obtained. Extensions to include
explanatory variables in the conditional mean and a more flexible conditional
heteroskedasticity specification are also discussed. Section 3 discusses estima-
tion of unknown parameters and gives least squares and GMM estimators for
the model class. The section also considers aspects of model evaluation and
forecasting. A small Monte Carlo experiment to study some key characteristics
of the estimators and of forecasts is included. Section 4 contains the empirical
results for the stock series. The final section offers some concluding comments.

2 Model

The single thing that most visibly makes the integer-valued MA (INMA) model
different from its continuous variable MA counterpart is that multiplication of
variables with real valued parameters is no longer a viable operation, when
the result is to be integer-valued. Multiplication is therefore replaced by the
binomial thinning operator

α ◦ u =
uX
i=1

vi,

where {vi}ui=1 is an iid sequence of 0− 1 random variables, such that Pr(vi =
1) = α = 1 − Pr(vi = 0). Conditionally on the integer-valued u, α ◦ u is
binomially distributed with E(α ◦ u|u) = αu and V (α ◦ u|u) = α(1 − α)u.
Unconditionally it holds that E(α ◦ u) = αλ, where E(u) = λ, and V (α ◦ u) =
α2σ2 + α(1− α)λ, where V (u) = σ2. Obviously, α ◦ u ∈ [0, u].
Employing this binomial thinning operator, the INMA(∞) model can be

written

yt =
∞X
i=0

βi ◦ ut−i, (1)

with mostly β0 = 1.
1 The {ut} is an iid sequence of non-negative and integer-

valued random variables with, as above, E(u) = λ and V (u) = σ2.

1The INMA(∞) can, e.g., be obtained from the INAR(1), i.e. yt = α ◦ yt−1 + εt and
yt = αt ◦ y0+ t

i=1 α
t−i ◦ εi are equal in distribution. Assuming α ∈ [0, 1) and t large gives

that αt ≈ 0 and βi = αi.



INMA and Number of Stock Transactions 3

McKenzie (1988), Joe (1996), Jørgensen and Song (1998) and others stress
exact distributional results for yt, while we emphasize only the first two con-
ditional and unconditional moments of the model. One reason for our choice
will become apparent below when we discuss and introduce more flexible con-
ditional mean and heteroskedasticity specifications for yt than implied by (1).
As a consequence exact maximum likelihood (ML) estimation is beyond reach
though otherwise a desirable candidate for estimation. We could potentially
use ML estimation by directly specifying a conditional density for yt given its
history Yt−1; cf. the conditional duration model approach of Engle and Russell
(1998).
The finite-lag INMA(q) model

yt = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q (2)

was introduced by McKenzie (1986). Brännäs and Hall (2001) discuss model
generalizations and interpretations resulting from different thinning operator
structures, and an empirical study and approaches to estimation are reported
by Brännäs et al. (2002).
For the INMA(∞) model in (1), with independence between and within

thinning operations,2 and with {ut} an iid Poisson sequence with σ2 = λ, and
β0 = 1, the moment expressions are:

E(yt) = V (yt) = λ

Ã
1 +

∞X
i=1

βi

!
(3a)

ρk = λ

Ã
βk +

∞X
i=1

βiβk+i

!
/V (yt), k ≥ 1. (3b)

It is obvious from these moments that they only generate positive values and
that

P∞
i=0 βi <∞ is required for {yt} to be a stationary sequence. Assuming

instead, e.g., an iid distribution with mean λ and variance σ2 changes the
variance and the autocorrelation function to

V (yt) = λ
∞X
i=1

βi(1− βi) + σ2

Ã
1 +

∞X
i=1

β2i

!
(3c)

ρk = σ2

Ã
βk +

∞X
i=1

βiβk+i

!
/V (yt), k ≥ 1, (3d)

while leaving the mean unaffected and as in (3a).

2Pairs of thinning operations of the type θi ◦ ut and θj ◦ ut, for i 6= j, are independent
(McKenzie, 1988). Assumptions of this type can be relaxed (cf. Brännäs and Hall, 2001).
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In case the lag length q is finite, summing to infinity is replaced by summing
to q in (3c)-(3d) and to q − k in the numerator of (3d). In that case ρk = 0,
for k > q. Figure 1 gives an illustration of two autocorrelation functions when
βi, i ≥ 1, are set as in the Monte Carlo experiment, below.

Lag

1 4 8 12 16 20

A
ut

oc
or

re
la

tio
n/

Pa
ra

m
et

er

0.00

0.05

0.10

0.15

0.20

βi = exp(-1.5-0.3i)

βi = exp(-1.5-0.2i)

ρi for βi = exp(-1.5-0.2i)

ρi for βi = exp(-1.5-0.3i)

Figure 1: Autocorrelation functions in the Poisson case (dot-dashed lines) and
βi parameters (solid lines) when parameters are as in the Monte Carlo study,
below.

The conditional moments for the INMA(∞) model are:

E(yt|Yt−1) = λ+
∞X
i=1

βiut−i (4a)

V (yt|Yt−1) = σ2 +
∞X
i=1

βi(1− βi)ut−i, (4b)

where Yt−1 is the information set available at time t− 1.
As the conditional variance varies with ut−i, i ≥ 1, there is conditional het-

eroskedasticity of a moving average type. We can call this property MACH(∞)
and for finite q, MACH(q) (cf. the notation ARCH(p)). Note that the re-
sponse to lagged ut−is is weaker in the conditional variance (4b) than in (4a)
as βi ∈ [0, 1]. The relative size of the two moments will largely depend on
the sizes of λ and σ2. Note also that even though a Poisson distribution for
ut implies a Poisson distributed yt, the conditional distribution of yt given its
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past is not the Poisson, as indicated, e.g., by the difference between (4a) and
(4b).
As measures of reaction times to shocks/news in the {ut} sequence we may

use the mean lag
P∞

i=0 iβi/w, where w =
P∞

i=0 βi. Alternatively, we may
use the median lag, which is the smallest k such that

Pk
i=0 βi/w ≥ 0.5 (e.g.,

Greene, 2003, ch. 19).

2.1 Extensions

There are two obvious extensions to the model that appear of high empirical
relevance. First, we may let λ become time-varying and a function of explana-
tory variables. The natural specification is

λt = exp(xtθ) ≥ 0, (5)

where in xt we may include k variables related to previous prices, etc. A
consequence of the time-varying λt is that moment expressions become time
dependent, but the additional difficulty with respect to estimation is marginal.
Another obvious extension in order to obtain more flexible conditional vari-

ance specifications in (4b) is to let σ2 become time dependent. We may let σ2t
depend on past values on σ2t , ut and explanatory variables in, e.g., the following
exponential way

σ2t = exp
h
φ0 + φ1 lnσ

2
t−1 + . . .+ φP lnσ

2
t−P

+ γ1(ut−1 − λ)2 + . . .+ γQ(ut−Q − λ)2 + xtα
¤

(6)

(cf. Nelson, 1991). There could also be additional contributions, or at least
different ones, to the conditional variance if, e.g., the different thinning oper-
ations were dependent (cf. Brännäs and Hall, 2001; Brännäs and Hellström,
2001).
It is also possible to let βi be, e.g., a logistic function of explanatory vari-

ables (Brännäs et al., 2002) and to reduce the number of βis by specifying a
distributed lag distribution of, e.g., the form βi = δ0 exp(−δ1i) with δ0 ∈ (0, 1]
and δ1 ≥ 0 for i ≥ 1.

3 Estimation

In this section we discuss approaches to the estimation of the unknown para-
meters of the conditional mean and variance functions. Both the conditional
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mean and the conditional variance will contain time dependent λt and σ2t spec-
ifications, respectively, unless otherwise stated. As we do not assume a full
density specification the proposed estimators can be viewed as semiparametric
ones.
The conditional least squares (CLS) estimator is focused on the unknown

parameters of the conditional mean function and requires an additional step
to estimate the unknown parameters of the conditional variance expression,
in particular in its σ2t part. Typically, CLS estimates of β = (β1, . . . , βq)

0,
and θ = (θ1, . . . , θk)

0 when λt is time-varying, are used and kept fixed when
estimating the variance function. In a feasible generalized least squares (FGLS)
estimator, these two steps facilitate GLS estimation of the conditional mean
function in a final step. Note that for small βi parameters we may expect the
conditional variance to be almost constant if σ2t = σ2 holds (cf. (4b)). In such
an instance we expect the CLS and FGLS estimators of the parameters to be
numerically close.
By a GMM estimator (Hansen, 1982), all parameters can be estimated

jointly. For the GMM estimator weighting is with respect to moment condi-
tions and not with respect to individual observations as in FGLS. We may
anticipate better performance of the FGLS than of the GMM estimator for the
parameters of the conditional mean function (Brännäs, 1995). Brännäs and
Hall (2001) found the CLS estimator to have weaker bias/mean square error
(MSE) performance than a GMM estimator based on probability generating
functions. This type of GMM estimator will not be considered here as it is
computationally more intricate and currently rests on arbitrarily setting values
on the argument of the generating function.
Common to the considered estimators is their reliance on the prediction

error

e1t = yt −E(yt|Yt−1). (7)

The CLS estimator minimizes the criterion function SCLS =
PT

t=r e
2
1t, where

r = q+1 and T is the time series length, with respect to the unknown parameter
vector ψ0 = (θ0,β0). To calculate the e1t sequence we consider e1t = ut −
λt +

P∞
i=1 (βi ◦ ut−i − βiut−i) and advocate setting the sum to zero rather

than using some randomization device. When standard software based on the
assumption E(ut) = λ = 0 is used to CLS estimate an INMA(q) model, the
obtained estimate of the constant term is an estimate of λ

Pq
i=0 βi. Given

estimates of βi it is hence possible to obtain an estimate of λ manually.
Obviously, there are alternative estimators, such as Durbin’s (1959) esti-

mator extended to handle λ, for the estimation of ψ. A recent summary of
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least squares and related estimators (interpreted as GMM) of low order MA(q)
models utilizing dual AR representations is given in Harris (1999). Method
of moment (or GMM) estimation based on the unconditional first and second
moments requires the solution of a system of nonlinear equations. Hence, a sim-
plicity argument does not apply and moreover the properties of the estimator
are for the MA(q) model not very satisfactory.
For the second step, normal equations based on the conditional variance

prediction error
e2t = (yt −E(yt|Yt−1))2 − V (yt|Yt−1) (8)

are used for FGLS estimation, and incorporated as moment conditions for
GMM estimation. Here too the conditional variance specification should have
a say on the choice of instrumental variables. For FGLS S2 =

PT
t=s e

2
2t, where

s = max(q, P,Q) + 1, is minimized with respect to the parameters of the σ2t
function, i.e. ω0 = (σ2, φ0, . . . , φP , γ1, . . . , γQ, α0) and with the CLS estimates
ψ̂ and {ût} kept fixed. In case σ2 is time invariant an obvious estimator is of
the simple form

σ̂2 = (T − s)−1
TX
t=s

"
ê21t −

qX
i=1

β̂i(1− β̂i)ût−i

#
.

For the third step of FGLS, minimizing the criterion

SFGLS =
TX
t=s

e21t/V̂ (yt|Yt−1)

with V̂ taken as given, gives the FGLS estimates of the parameter vector ψ of
the conditional mean function. The covariance matrix estimators are:

Cov(ψ̂CLS) =

Ã
TX
t=r

∂e1t
∂ψ

∂e1t
∂ψ0

!−1
= A−1

Cov(ψ̂FGLS) =

Ã
TX
t=r

V̂ −1(yt|Yt−1) ∂2e1t
∂ψ∂ψ0

!−1
= B−1.

A robust estimator for the CLS estimator is of the form A−1BcA
−1, where Bc

is as B with V̂ −1(yt|Yt−1) replaced by ê21t.
Using a finite maximum lag q for a true INMA(∞)model can be expected to

have a biasing effect on the estimator of the constant term λ of the conditional
mean function of the INMA(q) model. The conditional expectation of the
difference between the infinite and finite models is

P∞
i=q+1 βiut−i, which has
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expectation λ
P∞

i=q+1 βi. For large q the latter sum will be close to zero as we
expect βi, i ≥ q + 1, to approach zero for large q. An estimate of the constant
term can then be expected to be only moderately too large. In analogy with
a linear regression model and the OLS estimator the conventional analysis of
the consequences of omitted variables, i.e. ut−q−1, . . . , ut−∞, suggests that we
should expect a positive bias in the estimates of βi for small q. This is so,
since all βi > 0 and the covariance between included and incorrectly excluded
lags of ut is always λ

2 as E(utut−j) = λ2, j 6= 0, under independence. By a
related argument, we expect no additional bias if q is chosen larger than some
true value q∗. An immediate consequence of these intuitive arguments is that
q should, at least, initially be chosen large. Subsequent testing could later be
used to reduce the initial q.

The GMM criterion function

q =m0Ŵ−1m

has the vector of moment conditions m depending on the specification and is
minimized with respect to η0 = (ψ0,ω0). The moment conditions corresponding
to the conditional mean are collected into

m1 = (T −m)−1
TX

t=m+1

m1t,

wherem ≥ q. In the Monte Carlo study below we use e1t, e1te1t−1, . . . , e1te1t−m
form1, while for the empirical results we use the first order condition of the CLS
estimator, i.e. e1t∂e1t/∂ψk = 0, to give the conditions. For the conditional vari-
ance the moment conditions are formed from E(e21t)−σ2t −

Pq
i=1 βi(1−βi)ut−i

with instruments from the collection of σ2t−i, e
2
1t−i and xkt. The conditions are

collected into a vector m2. Finally, m =(m0
1,m

0
2)
0. As a consistent estimator

of the weight matrixW we use

Γ̂ = (T −m)−1
TX

t=m+1

mtm
0
t.

The covariance matrix of the parameter estimator is, whenW is set equal to
an identity matrix, estimated by Cov(η̂) = (T−m)−1(Ĝ0Ĝ)−1Ĝ0Γ̂Ĝ(Ĝ0Ĝ)−1,
where Ĝ = ∂m̂/∂η̂0. When the numbers of moment conditions and parameters
are equal; Cov(η̂) = (T −m)−1Ĝ−1Γ̂(Ĝ

0
)−1.
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3.1 Model Evaluation

To test against serial correlation in standardized residuals ê1t/V̂ 1/2(yt|Yt−1)
and squared standardized residuals we may use the Ljung-Box test statis-
tic LBK = T (T + 2)

PK
i=1 r

2
i / (T − i), where ri is the lag i autocorrelation

of the standardized residual. Under homoskedasticity and independence the
test statistic is asymptotically χ2(K) distributed. Davis and Dunsmuir (2000)
and Lobato, Nankervis and Savin (2001) recently considered corrections to the
Ljung-Box statistic when heteroskedasticity and serial correlation are present.

3.2 Forecasting

For an INMA(∞) model the forecasts µT+h|T = E(yT+h|YT ), h ≥ 1, are

µT+h|T = λ
h−1X
i=0

βi +
∞X
i=h

βiuT+h−i, h ≥ 1.

The limiting value of the forecast as h→∞ is λ
P∞

i=0 βi, which is the mean of
the process. For finite q the sum to infinity in the second term is replaced by
summing up to q for h ≤ q. For h > q, the forecast is again equal to the mean
of the process, i.e. λ

Pq
i=0 βi.

The variance of the forecast error eT+h = yT+h−µT+h|T is for the INMA(∞)
model with known parameters

sT+h|T = σ2
h−1X
i=0

β2i + λ
∞X
i=1

βi(1− βi).

For h ≤ q, the forecast error variance for the INMA(q) model is sT+h|T =

σ2
Ph−1

i=0 β2i + λ
Pq

i=1 βi(1− βi).

Obviously, the uncertainty in estimated parameters will increase these vari-
ances. To obtain expressions for such variances we could consider various ap-
proximations to V (eT+h) = Eη̂(sT+h|T,η̂) + Vη̂(µT+h|T,η̂). Using first order
Taylor expansions of the two terms around the true parameter vector η we get
the approximative variance V (eT+h) ≈ sT+h|h + g0 [E(η̂)− η] + h0Cov(η̂)h,
where g = ∂sT+h|h/∂η and h = ∂µT+h|h/∂η. Most often a consistent estima-
tor (E(η̂) − η = 0) and a large sample (Cov(η̂) ≈ 0) are assumed in which
case sT+h|T evaluated at estimates is the expression to employ.
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3.3 A Small Monte Carlo Experiment

In this small Monte Carlo experiment we study the bias and MSE properties of
the CLS, FGLS and GMM estimators for finite-lag specifications, when data is
generated according to an infinite-lag INMA model. In addition, we study the
serial correlation properties of estimated models by the Ljung-Box statistic as
well as the properties of forecasts one and two steps ahead.
The data generating process is as in (1), with βi = exp(γ0 + γ1i), i ≥ 1,

and β0 = 1. The {ut} sequence is generated as Poisson with parameter λ, so
that σ2 = λ is time invariant in the conditional variance (4b).3 We set λ = 5,
γ0 = −1.5, γ1 = −0.1,−0.2,−0.3 and −0.4, and T = 1000 and 10 000. The
number of replications is 1000 in each design point. In generating the data the
first 50 observations are discarded, which appears safe as βi is effectively zero
at lag 50 (the truncation point) for the used γ0 and γ1 combinations.
For the estimators we choose q = 10, 20 and 30. By the q choices we will

effectively study under as well as overparameterized model version.4 We use a
simplex algorithm (the AMOEBA routine of Press et al., 1992) to minimize the
criterion function of each estimator. For the GMM estimator we setW equal
to the identity matrix. The Ljung-Box statistic is based on 10 autocorrelations,
and the forecast horizon is h = 2.
We report bias and MSE results for βi after accumulation over i = 1, . . . , 10

for all employed q values. The full results are summarized in Table A1 of the
Appendix, while Figure 2 contains the results for the CLS estimator. Starting
with the CLS estimator we find that as sample size increases there is a decline
in MSE throughout. For the bias there is a decline only for the most overpa-
rameterized case of q = 30. Biases and MSEs drop as q increases. Biases are
negative for q = 10 and 20, with the exception of the γ1 = −0.1 case for q = 10.
This is the most underparameterized model. For q = 10 the absolute bias drops
from 14.6 percent (or on average 1.46 percent for the individual parameter) for
γ1 = −0.1 to 4.4 percent and less for γ1 ≤ −0.2. The FGLS and GMM es-
timators also focus on the σ2 parameter, albeit in different ways. The biases
and MSEs of the GMM estimator are in most cases the poorest. The FGLS
estimator has smaller biases and MSEs than the CLS estimator for q ≤ 20 and
all estimators are quite close for q = 30. Setting σ2 = λ and letting all other
parts of the conditional variance be known improves on the performance of the

3The experiments are performed using Fortran codes. Poisson random deviates are gener-
ated by the POIDEV function (Press et al., 1992), while the binomial thinning is performed
by the BNLDEV function.

4 10
i=0 βi = 2.34 and βk < 0.01 for k ≥ 32 for γ1 = −0.1, the sum is 1.87 for k ≥ 16 and

γ1 = −0.2, 1.61 for k ≥ 11 and γ1 = −0.3, and 1.45 for k ≥ 8 and γ1 = −0.4.
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Figure 2: Bias and MSE properties in the Monte Carlo experiment of the
CLS estimator of

P10
i=1 βi for T = 1000 and 10 000 and different values of

the lag length q in the adopted INMA models. The circle marker indicates
that γ1 = −0.1 is used in generating the data, square (γ1 = −0.2), triangle
(γ1 = −0.3) and diamond (γ1 = −0.4).

GMM estimator though not by much. Note that the use of a weight matrix
different from the identity matrix may change these outcomes.

In summary, the FGLS estimator comes out as the best estimator of
P10

i=1 βi.
However, the CLS estimator which is the simplest to use of the three considered
estimators is not far behind. It is also clear that q should be chosen large.

The ability of the Ljung-Box statistic to detect remaining serial correlation
was also studied by counting the number of replications exceeding a critical
value of χ20.95(10). In brief, both under and overparameterization give rise
to detectable serial correlation. With respect to the forecasting performance
both in terms of bias (or mean error) and MSE the FGLS estimator performs
better than the other two estimators. In addition, the GMM performance is
weaker than that of the CLS estimator. For q = 30 the differences between the
performances of estimators are small.
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Figure 3: Time series plots for Ericsson.

4 Data and Descriptives

The time series for the number of transactions per minute in Ericsson B, in
the period July 2 — 22, 2002, are displayed in Figure 3. There are frequent
zero frequencies and hence the use of a count data modelling approach is called
for. In producing the graph and for the analyses of this paper we have deleted
all trading before 0935 (trading opens at 0930) and after 1714 (order book is
closed at 1720). The reason for these deletions is that our main focus is on
ordinary transactions and the first few minutes are likely to be subject to a
different mechanism with considerably higher trading frequencies. The final
minutes of the trading day have practically no trading. The basic data were
downloaded from the Ecovision system and later filtered by the authors. Due
to a technical problem in capturing transactions the first captured minute of
July 19 is 0959. There are altogether 6875 observations for the Ericsson series.
Descriptive statistics and a histogram for the series are given in Figure 4.

Autocorrelation functions for the series and its first difference are given
in Figure 5. For the level series, the function indicates long memory. The
autocorrelations after lag one of the first difference series are practically zero.
The partial autocorrelation functions die out gradually for both the level and
the difference series. Taken together the functions for the first difference series
signal that a model for such a series should include a MA(1) component. The
autocorrelations for the level series suggest that a low order AR-part is required
together with a low order MA-part. With respect to the mean pattern over the
day there is more trading during the first two hours than later.

When specifying and estimating INARMA models according to the conven-
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Table 1: ARMA estimation results (standard errors in parentheses) for the
Ericsson series.

ŷt = 0.991
(0.002)

ŷt−1 + 8.179
(0.870)

− 0.757
(0.012)

ût−1 − 0.088
(0.012)

ût−2

s2 = 18.25, LB20 = 28.16 (p = 0.11)

∇ŷt = 0.110
(0.014)

∇ŷt−1 − 0.001
(0.007)

− 0.874
(0.007)

ût−1

s2 = 18.32, LB20 = 29.79 (p = 0.07)

Note: Models estimated in SPSS.

tional Box-Jenkins methodology, in both level and first difference forms, it is
obvious that, at least, the β̂1 estimates are large and have negative signs and
that the INAR(1) parameter is suspiciously close to one (cf. Table 1).5 Hence
there is a violation of the probability interpretation of βi. It also appears that
pure but higher order INAR models are not successful in eliminating serial
correlation. Therefore, there is empirical justification for considering INMA
models with long lags even though such models are less parsimoniously para-
meterized.
For the purpose of evaluating the impact of explanatory variables on λt

and σ2t we also have access to price, volume and spread. These are recorded
at the last transaction of the previous minute, i.e. at t − 1. In case there
is no transaction in the previous minute(s), we use the most recent previous
notations. Instead of including variables in levels we use first differences to
reflect news: ∇pt = pt−1 − pt−2 reflects the news (innovation when pt follows
a random walk) value in the price, ∇vt = vt−1 − vt−2 in volume and ∇st =
st−1 − st−2 in the spread. For volume we divide through by 10 000 000.

5 Empirical Results

The empirical results are presented in terms of finite-lag INMA(q) models. Es-
timation is carried out by the conditional and feasible generalized least squares
(CLS(FGLS) estimators for the standard INMA(q) model as well as when a

5Note that for a count data INAR(1) model with a unit root the observed sequence of
observations can not decline. Adding a MA part to the INAR(1) does not alter this feature.
As is obvious from Figure 3 there are ups and downs in the present time series, so that a
unit root can not logically be supported by the data.
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time-varying λt is allowed for. GMM estimation is employed for full models
including conditional heteroskedasticity and time-varying λt specifications.

AIC and SBIC criteria are used to find the lag length q, allowing for no
gaps in the βi sequence. For Ericsson AIC is minimized at q = 50, while SBIC
indicates an order q = 47. Both criterion functions are quite flat indicating
some uncertainty with respect to a true q-value.6 CLS estimation results for
pure INMA models are presented in Table 2. Though differences between
estimates are quite small, the smaller q-value gives estimates that are larger
for low lags and smaller for large lags. The standard errors of the estimates
(based on a numerical derivative version of A−1) are throughout small and
for both q-values individual hypotheses of βi = 0, i = 1, . . . , q, are rejected
throughout. Note also that β̂i estimates are larger than zero throughout even
if an unrestricted estimator is used. The confidence intervals at the same lag
overlap in most instances.

For q = 47, the β̂i estimates give a mean lag of 15.8 minutes and a median
lag of 14 minutes, while for q = 50 the mean lag is 16.0 minutes and the median
14 minutes. Hence, for the measurement of reaction time the q-choice does not
matter much in this case. In additional estimations with 5 minute interval
lengths, the mean lag remained unchanged but the median lag increased to 16.
Therefore, we conclude that a one-unit size increase in u will have about half
its effect in the first 14-16 minutes after the change.

For both models R2 = 0.54, while the fit of models containing an INAR(1)
parameter (cf. Table 1) is better than for pure INMA models. Note also that
there are no strong correlations between estimates in this case. Table 2 suggests
that the β̂is are roughly linear in i. A linear regression gives β̃i = 0.175−0.0029i
(R2 = 0.84) for q = 47 and β̃i = 0.174 − 0.0029i (R2 = 0.85) for q = 50. The
goodness-of-fit improves further if β̂1 is dropped for these regressions.

There is no remaining serial correlation in the standardized residual, for
either q-value, when for the conditional variance we use that of the Poisson
distributed INMA(q), i.e. we set σ̂2 = λ̂. However, the squared standardized
residuals indicate remaining conditional heteroskedasticity for both models.
The largest autocorrelation coefficient is 0.057 for the squared and −0.018 for
the standardized residual. As a first step of attempting to find a remedy for
the squared residual problem, a time invariant σ2 is estimated in a second
step of the FGLS estimator. For both q-values the σ̂2s are substantially larger
than the corresponding λ̂ estimates. Using σ̂2 instead of λ̂ gives roughly the

6 In some experimentation with an AstraZeneca series lower order model representations
(q = 18 and 30) are found.
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Table 2: Estimation results for INMA(q) models for Ericsson (s.e. times 100).

q = 47 q = 50

Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e.

1 .2407 .28 26 .1146 .30 1 .2378 .28 26 .1102 .30

2 .1509 .29 27 .0919 .30 2 .1466 .29 27 .0899 .30

3 .1539 .29 28 .0917 .30 3 .1520 .29 28 .0891 .30

4 .1776 .29 29 .1025 .30 4 .1734 .29 29 .0991 .30

5 .1545 .30 30 .1135 .30 5 .1498 .30 30 .1114 .30

6 .1559 .30 31 .0905 .30 6 .1512 .30 31 .0869 .30

7 .1175 .30 32 .0901 .30 7 .1141 .30 32 .0863 .30

8 .1310 .30 33 .0737 .30 8 .1260 .30 33 .0696 .30

9 .1414 .30 34 .1060 .30 9 .1382 .30 34 .1031 .30

10 .1365 .30 35 .0874 .30 10 .1309 .30 35 .0855 .30

11 .1377 .30 36 .0683 .30 11 .1321 .30 36 .0676 .30

12 .1358 .30 37 .0476 .30 12 .1320 .30 37 .0494 .30

13 .1457 .30 38 .0669 .30 13 .1426 .30 38 .0665 .30

14 .1120 .30 39 .0775 .30 14 .1090 .30 39 .0780 .30

15 .1200 .30 40 .0407 .30 15 .1139 .30 40 .0380 .30

16 .1203 .30 41 .0578 .30 16 .1147 .30 41 .0545 .30

17 .1333 .30 42 .0313 .30 17 .1269 .30 42 .0293 .30

18 .1470 .30 43 .0412 .29 18 .1412 .30 43 .0395 .30

19 .1393 .30 44 .0368 .29 19 .1347 .30 44 .0369 .30

20 .1252 .30 45 .0528 .29 20 .1200 .31 45 .0540 .29

21 .1245 .30 46 .0583 .29 21 .1198 .30 46 .0633 .29

22 .0990 .30 47 .0289 .28 22 .0938 .30 47 .0324 .29

23 .1127 .30 23 .1090 .30 48 .0200 .29

24 .0936 .30 24 .0899 .30 49 .0029 .29

25 .1020 .30 25 .0974 .30 50 .0179 .28

λ 1.341 1.67 1.362 1.72

LB20 14.37 14.80

LB2
20 81.74 84.06

Note: The Ljung-Box statistics LB20 and LB
2
20 are obtained with σ̂

2 = λ̂.
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same LB20 statistic, while for the squared standardized residual values increase
substantially. Estimating models with βi = κ0 + κ1i, where κ0 and κ1 are the
unknown parameters, leads to more severe serial correlation.
Next, we consider the impact of explanatory variables on λt and on σ2t .

Table 3 reports FGLS and CLS estimates for INMA(q) with λt specifications
for q = 50. The FGLS estimates are obtained by using the CLS estimates
ê1t and

Pq
i=1 β̂i(1 − β̂i)ût−i to estimate a σ2t model. Corresponding to the

λ̂t specification we have σ̂
2
t = exp(1.17 + 0.03 ln σ̂

2
t−1 − 3.70∇pt + 0.08∇p+t +

8.58∇st), R2 = 0.10. This suggests that a negative price change increases
volatility while a positive change reduces volatility. A negative spread change
lowers volatility while a widening spread increases volatility. A dummy variable
for trading before 1101 AM had no significant effect even though trading is more
frequent in the early hours of the day.
On comparison with Table 2, the CLS β̂i estimates are marginally smaller

for all lags. In addition, the FGLS estimates are sometimes smaller than the
CLS estimates. For CLS the lag 49 estimate has a negative sign but is insignifi-
cant. It remains insignificant and small when estimated by the FGLS estimator
but then the sign is correct.
In the λt function the lagged mean level, λt−1, has a rather small but

significant effect when estimated by the FGLS estimator, while it is insignificant
in the CLS estimated model. In terms of the CLS estimates there are significant
asymmetric but not very different effects for the price change variable; with a
tick size of 0.1 SEK we expect an enhancing average effect of 0.63 for a positive
and 0.73 for a negative one tick change. The asymmetry is insignificant for
FGLS but the corresponding estimated effects are larger and equal to −0.81
and 0.39, respectively. News about spread increase the frequencies. These are
expected signs when compared to duration models for the same underlying
data (Brännäs and Simonsen, 2003). The current effects are more significant
as for the duration data only the news about prices came out with a significant
effect. To account, at least, partly for seasonal within days effects we included
a dummy variable 1(t ≤ 1100) which takes value one for transactions before
1101 AM and zero otherwise. The estimated effect is positive and significant
for both estimators.
There is no practical change in the serial correlation properties for the CLS

estimated model with σ̂2t = λ̂t, though the Ljung-Box statistic for the squared
residuals is much smaller and not very far from a p-value of 0.05. In this case the
largest autocorrelations are −0.038 and 0.032 (squared standardized residual)
for q = 50. The effect of news in volume also come out significantly but implies
substantial serial correlation in both ê1t/V̂

1/2(yt|Yt−1) and its square. When
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Table 3: FGLS and CLS estimation results for INMA(50) with exponential λt
models for Ericsson (s.e. times 100). For the σ2t specification, see the text.

FGLS CLS
Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e.

1 .2257 .80 26 .1035 .84 1 .2312 .28 26 .1069 .30

2 .1481 .82 27 .0839 .85 2 .1412 .29 27 .0854 .30

3 .1466 .82 28 .0868 .85 3 .1511 .29 28 .0853 .30

4 .1641 .83 29 .0941 .85 4 .1701 .29 29 .0943 .30

5 .1502 .83 30 .1110 .85 5 .1463 .30 30 .1078 .30

6 .1468 .83 31 .0914 .85 6 .1462 .30 31 .0845 .30

7 .1124 .84 32 .0844 .85 7 .1116 .30 32 .0826 .30

8 .1207 .84 33 .0631 .85 8 .1215 .30 33 .0666 .30

9 .1301 .84 34 .0993 .85 9 .1295 .30 34 .1004 .30

10 .1301 .84 35 .0855 .85 10 .1255 .30 35 .0835 .30

11 .1296 .84 36 .0594 .85 11 .1273 .30 36 .0625 .30

12 .1251 .85 37 .0417 .84 12 .1283 .30 37 .0436 .30

13 .1435 .85 38 .0607 .84 13 .1401 .30 38 .0606 .30

14 .1034 .85 39 .0689 .84 14 .1012 .30 39 .0718 .30

15 .1159 .85 40 .0302 .84 15 .1126 .30 40 .0333 .30

16 .1096 .86 41 .0500 .84 16 .1080 .30 41 .0540 .30

17 .1254 .85 42 .0316 .84 17 .1252 .30 42 .0281 .30

18 .1402 .85 43 .0390 .84 18 .1374 .30 43 .0381 .30

19 .1317 .86 44 .0331 .84 19 .1292 .30 44 .0328 .30

20 .1160 .86 45 .0548 .84 20 .1173 .31 45 .0500 .29

21 .1193 .85 46 .0616 .82 21 .1172 .30 46 .0599 .29

22 .0910 .85 47 .0308 .82 22 .0930 .30 47 .0301 .29

23 .0991 .85 48 .0172 .81 23 .1057 .30 48 .0174 .29

24 .0847 .85 49 .0051 .81 24 .0883 .30 49 -.0001 .29

25 .0927 .85 50 .0235 .80 25 .0973 .30 50 .0158 .28

θ0 .2483 31.54 -.5802 4.01

λ∗t−1 .3281 3.07 -.0151 1.33

∇pt -3.892 142.6 -7.276 51.59

∇p+t -4.154 314.4 13.60 18.79

∇st 11.128 54.85 4.987 35.40

1t .2420 2.86 .3613 1.30

LB20 43.95 20.66

LB2
20 12.60 33.28

Note: λt = exp(θ0 + θ1λ
∗
t−1 + θ2∇pt + θ3∇p+t + θ4∇st + θ51t), where λ

∗
t−1 =

lnλt−1, ∇p+t = 0 for ∇pt ≤ 0 and ∇p+t = ∇pt for positive news, and 1t =
1(t ≤ 1100).
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λt is changed to have a linear form there are no serial correlation problems.
Unfortunately, λ̂t is then negative for some 30 percent of the observations.
Obviously, this is a logically unappealing feature. For the FGLS estimated
model we note that conditional heteroskedasticity no longer appears a problem,
while the standardized residual now signals trouble. The largest autocorrelation
coefficients are 0.042 and 0.021 (squared standarized residual).
Full models including σ2t of the exponential type in (6) have been estimated

by GMM. In each instance there is no serial correlation in the standardized
residual, but there is serial correlation in the squared standardized residuals of
about the same magnitude as the CLS of Table 3.

6 Concluding Remarks

The suggested integer-valued moving average model has relatively straight-
forward moment properties and estimating the unknown parameters by well-
known techniques is relatively simple. In addition, both the conditional least
squares and feasible least squares estimators are readily available in many stan-
dard statistical packages and have good statistical properties.
The current paper focused on modelling a time series of the intra-day num-

ber of transactions per time unit using the integer-valued moving average model
class. In its practical implementation for the time series of the number of trans-
actions in Ericsson B, we found both promising and less advantageous features
of the model. With the CLS estimator it was relatively easy to model the con-
ditional mean in a satisfactory way in terms of both interpretation and residual
properties. It was more difficult to obtain satisfactory squared residual prop-
erties for the conditional variance specifications that were tried. The FGLS
estimator reversed this picture and we suggest that more empirical research is
needed on the interplay between the conditional mean and heteroskedasticity
specifications for count data. Depending on research interest the conditional
variance parameters are or are not of particular interest. For studying reaction
times to shocks or news it is the conditional mean that matters, in much the
same way as for conditional duration models. In addition, the conditional vari-
ance has no direct ties to, e.g., risk measures included in, e.g., option values or
portfolios.
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1 Introduction

This paper focuses on the modelling of bivariate time series of count data
that are generated from stock transactions. Each transaction refers to a trade
between a buyer and a seller in a volume of stocks for a given price. Besides
volume and price, a transaction is impounded with other information like,
e.g., spread, i.e. the difference between bid and ask price. The used data
are aggregates over five minutes intervals and computed from real time, time
series data. The presented count data model can be seen as an inverse of
the conditional duration model of Engle and Russell (1998) in the sense that
short durations in a time interval correspond to a large count and vice versa.
One obvious advantage of the current model over the conditional duration
model is that there is no synchronization problem between the time series.1

Hence, the spread of shocks and news is more easily studied in the present
framework. Moreover, the bivariate count data models can easily be extended
to multivariate models without much complication.
The introduced bivariate time series count data model allows for negative

correlation between the counts and the integer-value property of counts is taken
into account. The model that we introduce emerges from the integer-valued
autoregressive moving average (INARMA) model, which is related to the con-
ventional ARMA class of Box and Jenkins (1970). An important difference,
however, between these two model classes is that INARMA comprises parame-
ters that are interpreted as probabilities so that the values of the parameters
are restricted to unit intervals. McKenzie (1986) and Al-Osh and Alzaid (1987)
independently introduced the INARMA model for pure time series, while Brän-
näs (1995) extended an INAR model to account for explanatory variables. The
application of INARMA models in economics is rather new. Some empirical
applications of INARMA are due to Blundell, Griffith and Windmeijer (2002),
who studied the number of patents in firms, Rudholm (2001), who studied com-
petition in the generic pharmaceuticals market, and Brännäs, Hellström and
Nordström (2002), who estimated a nonlinear INMA(1) model for tourism de-
mand. Some introductory treatises of count data are available in Winkelmann
and Zimmermann (1995) and in specialized monographs, such as Cameron and
Trivedi (1998).
A large number of studies have considered the modelling of bivariate or mul-

tivariate count data assuming an underlying Poisson distribution (e.g., Gourier-
oux et al., 1984). Heinen and Rengifo (2003) introduce multivariate time series

1For a bivariate duration model the durations for transactions typically start at different
times and as a consequence measuring the covariance between the series becomes intricate.
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count data models based on the Poisson and the double Poisson distribution.
Their models allow for negative correlation among the variables but depart from
conventional count data regression models. Earlier models for intra-day trans-
actions data or related financial variables have departed from traditional count
data regression models or from extended versions (e.g., Brännäs and Brännäs,
2004; Rydberg and Shephard, 1999). Until now, the only related study based
on the INARMA class appears to be Brännäs and Quoreshi (2004). In a uni-
variate setting they found that the estimated INARMA and INAR models did
not satisfy the restrictions on parameters while INMA did so. Here, we develop
a bivariate integer-valued moving average (BINMA) model that does satisfy the
natural conditions of a count data model and that accounts for the long mem-
ory aspects of the data. The model can be used to measure the reaction time
for, e.g., macro-economic news or rumours and how new information spreads
through the system. The model is specified in terms of first and second order
moments conditioned on historical observations.
The paper is organized as follows. The BINMA model is introduced in

Section 2. The conditional and unconditional properties of the BINMA models
are obtained. Extensions of the BINMAmodel are also discussed in this section.
The estimation procedures, CLS, FGLS and GMM, for unknown parameters
are discussed in Section 3. A detailed description of data is given in Section
4. The empirical results for the stock series are presented in Section 5 and the
concluding comments are included in the final section.

2 Model

This section introduces the BINMA model for the number of transactions in
equidistant time intervals. The unconditional and conditional first and second
order moments of the BINMA model are obtained. Later an extension to time
dependent parameters and the possible inclusion of explanatory variables are
discussed. Finally, multivariate extensions are briefly indicated.

2.1 The BINMA Model

Assume that there are two stock series, y1t and y2t, for the number of transac-
tions in intra-day data. Assume further that the dependence between y1t and
y2t emerges from factor(s) like for example macro-economic news, rumors, etc.
The macro-economic news may impact both stocks. The correlation between
these stock variables can be modelled by extending the INMA(q) model into a
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bivariate one that we call BINMA(q1,q2). The model in its simplest form can
be defined as follows

y1t = u1t + α11 ◦ u1t−1 + . . .+ α1q1 ◦ u1t−q1 (1a)

y2t = u2t + α21 ◦ u2t−1 + . . .+ α2q2 ◦ u2t−q2 . (1b)

The macro-economic news are assumed to be captured by {ujt} , j = 1, 2 and
filtered by {αjt} through the system. The binomial thinning operator is used
to account for the integer-valued property of count data. This operator can be
written

α ◦ u =
uX
i=1

zi (2)

with {zi}ui=1 an iid sequence of 0-1 random variables, such that Pr(zi = 1) =
α = 1− Pr(zi = 0). Conditionally on the integer-valued u, α ◦ u is binomially
distributed with E(α◦u | u) = αu and V (α◦u | u) = α(1−α)u. Unconditionally
it holds that E(α ◦u) = αλ and V (α ◦u) = α2σ2+α(1−α)λ, where E(u) = λ

and V (u) = σ2. Obviously, α ◦ u ∈ [0, u].
Assuming independence between and within the thinning operations and

{ujt} an iid sequence with mean λj and variance σ2j = υjλj , the unconditional
first and second order moments can be given as follows:

E(yjt) = λj(1 +

qjX
i=1

αji) (3a)

V (yjt) = λj [(υj +

qjX
i=1

αji) + (υj − 1)
qjX
i=1

α2ji] (3b)

γjk = σ2j (αjk +

qjX
i=1

αjiαjk+i), k ≥ 1 (3c)

where γjk denotes the autocovariance function at lag k and υj > 0. It is clear
from (3) that the mean, variance and autocovariance take only positive values
since λj , σ2j and αji are all positive. Note also that the variance may be larger
than the mean (overdispersion), smaller than the mean (underdispersion), or
equal to the mean (equidispersion) depending on whether υj > 1, υj ∈ (0, 1)
or υj = 1, respectively.
Macro-economic news, rumors, etc. can enhance the intensity of trading

in both stocks or lead the intensities in opposite directions. This implies that
investors in different stocks may react after the news in similar or different ways.
For example, investors may increase their investments in one stock leading to
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a possible increase in price, while reducing their investments in another stock
creating a possible price decrease. Thus, even though the prices of the two
stocks move in different directions, the intensities of trading in both stocks
may increase. For a fixed time interval [t− 1, t) the macro-economic news are
assumed to be captured by ujt for stock j.

Retaining the previous assumptions and allowing for dependence between
u1t and u2t the unconditional covariance function for BINMA(q1, q2) can be
given as follows:

γk =

(
Λ
³
α1k +

Pqj−k
i=1 α1k+iα2i

´
, 0 ≤ k ≤ min(q1, q2)

0, k > min(q1, q2) > 0
(4a)

γ−k =

(
Λ
³
α2k +

Pqj−k
i=1 α2k+iα1i

´
, 0 ≤ k ≤ min(q1, q2)

0, k > min(q1, q2) > 0
(4b)

where γk = Cov(y1t, y2t−k), γ−k = Cov(y1t−k, y2t), and Cov(u1t, u2t) = Λ =

ϕ − λ1λ2 where ϕ = E(u1tu2t). Note that there is no cross-lag dependence
among ujt and the covariances Cov(u1t, u2t) are assumed constant over time.
Note also that the sign of the covariance function in (4a−b) depends on the
relative sizes of ϕ and λ1λ2.

Brännäs and Hall (2001) give the conditional mean and variance for a uni-
variate model. The conditional mean and variance for the BINMA(q1, q2) are
in an analogous way

E(yjt|Yjt−1) = Ejt|t−1 = λj +

qjX
i=1

αjiujt−i (5a)

V (yjt|Yjt−1) = Vj|t−1 = υjλj +

qjX
i=1

αji(1− αji)ujt−i. (5b)

Note that the mean and variance are conditioned on only the previous observa-
tions, Yjt−1 = yjt−1, yjt−2.... Since the conditional variance varies with ujt−i, i
≥ 1, there is a conditional heteroskedasticity property of moving average type
that Brännäs and Hall called MACH(q). The effect of ujt−i on the mean is
greater than on the variance. Note also that like the unconditional variance the
conditional variance could be overdispersed, underdispersed or equidispersed
depending on whether υj > 1 +

Pqj
i=1 α

2
ji/λj , υj ∈ (0, 1 +

Pqj
i=1 α

2
ji/λj) or

υj = 1 +
Pqj

i=1 α
2
ji/λj , respectively. The conditional covariance function for
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BINMA(q1, q2) can be written

γk|t−1 = E[(y1t −E1t|t−1)(y2t−k −E2t|t−k−1) | Y1t−1, Y2t−k−1] (6)

=

½
Λ, k = 0

0, otherwise

Hence the conditional covariance does not vary with ujt.
In order to get some additional insight into the correlation structure of the

model consider the equidispersion case, i.e. υj = 1, or assume that {ujt} are
iid Poisson sequences with σ2j = λj . The unconditional second order moments
change to V (yjt) = E(yjt), while the first order unconditional moments (3a)
remain unchanged. The covariance function remains unaffected, while the cor-
relation function changes due to the changes in the variances. Hence, we will
use the standard deviations V 1/2(yjt) for the case of equidispersion, to build
the correlation function. For k = 0 in (4), the correlation between y1t and y2t
is

ρ
0
=
(1 +

Pmin(q1,q2)
1 α1iα2i)Λ

V 1/2(y1t)V 1/2(y2t)
. (7)

Note that this correlation can take a positive or a negative sign depending on
the size of ϕ relatively λ1λ2. In an univariate setting Brännäs and Quoreshi
(2004) showed that the autocorrelation function take only values in the interval
[0, 1]. By applying the Cauchy-Schwarz inequality we can show for ρ

0
that

| ϕ− λ1λ2 |≤ λ
1/2
1 λ

1/2
2 .

The correlation | ρ
0
| = 1 if and only if | ϕ−λ1λ2 | = λ

1/2
1 λ

1/2
2 and if in addition

αji = 1 for all i ≥ 1. For an invertible INMA model the latter condition is not
valid since then αji < 1. Hence, it is clear that | ρ

0
| < 1 (see appendix for

proof). This also holds for the over- and underdispersion cases. As υj deviates
from 1, | ρ

0
| decreases. It can be shown that this result gets support from the

coherence function for the BINMA(q1, q2).2

2.2 Extensions of the BINMA Model

The Multivariate INMA model follows directly from BINMA(q1, q2) and can
be written

yt= ut+A1 ◦ ut−1+ . . .+Aq ◦ ut−q (8)

2A detailed description of coherence function can be found, e.g., in Brockwell and Davis
(1991, ch. 4, 10 and 11).
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where the Ai, i = 1, . . ., q, are diagonal matrices and ut ∼ (λ,Σ). Covariation
between yt elements can also arise, even if Σ is a diagonal matrix but then,
at least, one of the Ai must have one or several off-diagonal elements. This
corresponds to letting yjt depend on lags of uit, i 6= j.
There are several other ways of extending the model. One way is to allow

for time-varying λ as a function of explanatory variables. This can be specified
as

λjt = exp(xjtθj) ≥ 0 (9)

where M variables related to, e.g., previous prices for correlated stocks are
included in xjt. In order to obtain a more flexible conditional variance specifi-
cation in (5b) we may let σ2j be time dependent σ

2
jt. Allowing σ2jt to depend

on past values of σ2jt, ujt and explanatory variables, using an exponential form,
we may specify (cf. Nelson, 1991)

σ2jt = exp[φ0 + φ1 lnσ
2
jt−1 + . . .+ φPj lnσ

2
t−1 (10)

+ω1(ujt−1 − λj)
2 + . . .+ ωQj (ujt−1 − λj)

2 + xjtξj ].

3 Estimation

Here, we discuss methods for the estimation of the unknown parameters of the
conditional mean and variance functions. Since we do not assume a full density
function the maximum likelihood estimator is not considered. As a result we
only discuss the conditional least squares (CLS), the feasible generalized least
square (FGLS) and the generalized method of moments (GMM) estimator.
The three estimators, CLS, FGLS and GMM, have the following residual

in common
ej1t = yjt −Ejt|t−1, j = 1, 2. (11)

To create empirical moment conditions, instruments are to be chosen depending
on the particular model specification. These moment conditions correspond
to the normal equations of the CLS estimator that focuses on the unknown
parameters of the conditional mean function. Alternatively and equivalently
the properties E(ej1t) = 0 and E(ej1tej1t−i) = 0, i ≥ 1 could be used. The CLS
estimator minimizes the criterion function SCLS =

PT
t=r e

2
j1t, where r = qj +1

and T is the length of the time series, with respect to the unknown parameter
vector ψ0j = (λj ,α

0
j) or ψ0j = (θ

0
j ,α

0
j) when a time-varying λjt is employed.

To calculate the sequence ej1t we write the prediction error on the form

ej1t = ujt − λjt +

qjX
i=1

(αji ◦ ujt−i − αjiujt−i). (12)
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Instead of using, say, some randomization device to evaluate the sum we advo-
cate using its expected value zero and so employ ej1t = ujt − λjt.
The parameters estimated with CLS are considered a first step of the FGLS

estimator. For the next step, the conditional variance and the covariance pre-
diction errors

ej2t = (yjt −Ejt|t−1)2 − Vj|t−1 (13)

e3t = e11te21t − γ
0|t−1

(14)

are used. The same prediction errors are also incorporated as moment condi-
tions for the GMM estimator.
For FGLS, Sj2 =

PT
t=sj

e2j2t and S3 =
PT

t=sj
e23t, where sj = max(qj , Pj , Qj)

+1, are minimized with respect to the respective parameters of the function
σ2jt and with the CLS estimates bψj and bujt kept fixed. Simpler and obvious
moment estimators for time invariant σ2j = υjλj and ϕ can be written on the
following forms

σ̂2j = (T − r)−1
TX

t=sj

"
e2j1t −

qjX
i=1

bαji(1− bαji)bujt−i#

bϕ = (T − s)−1
TX

t=s+1

h
e11te21t + bλ1bλ2i

where s = max(s1, s2)− 1. For the third and final step of the FGLS estimator,
the criterion

SFGLS =
TX

t=sj

(bV2|t−1e211t + bV1|t−1e221t − 2bγ0|t−1e11te21t)/ bDt (15)

is minimized with respect to ψj . In (15) bVj|t−1, bγ0|t−1 and bDt = bV1|t−1 bV2|t−1−bγ20|t−1 are taken as given. This gives the FGLS estimates of the parameter vec-
tor ψ = (ψ01,ψ

0
2)
0 of the bivariate conditional mean function. The covariance

matrix estimator is

Cov(bψFGLS) = (
TX

t=s+1

∂et
∂ψ0

bΩ−1 ∂et
∂ψ

)−1

where et = (e11t, e21t)
0 and bΩ is the covariance matrix for the residual series

from FGLS estimation.
One advantage of using the GMM estimator is that all parameters can be

estimated jointly (Hansen, 1982). In contrast to the FGLS estimator, where
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weight is given with respect to individual observation, the weighting in the
GMM estimator is constructed with respect to the moment conditions. We
may anticipate a better performance of the FGLS estimator than that of the
GMM estimator (Brännäs, 1995). The GMM criterion function

q =m0W−1m

has the vector of moment conditions m depending on the specification and is
minimized with respect to η0 = (ψ0,ω0) where ω0 = (σ2j , φ0, . . . ,+φPj , ω1, . . . ,
ωQj

, ξj). Them comprises three vectors, i.e. m = (m0
1,m

0
2,m

0
3). The moment

conditions corresponding to the conditional mean, i.e. the first order condition
of the CLS estimator

m1 = (T − n)−1
TX

t=n+1

m1t

where m1t = ej1t∂ej1t/∂ψk with n = s1 + s2 − 2. The moment conditions for
the conditional variance and the covariance corresponding to (13) and (14) are
collected into m2 and m3, respectively. The following is used as a consistent
estimator of the weight matrixW

Γ̂ = (T − n)−1
TX

t=n+1

mtm
0
t.

If we set cW = I, the covariance matrix of the parameter estimator is esti-
mated by Cov(η) = (T − n)−1(Ĝ0Ĝ)−1Ĝ0Γ̂Ĝ(Ĝ0Ĝ)−1, where Ĝ = ∂m̂/∂ η0.
The covariance matrix of the parameter estimator becomes Cov(η) = (T −
n)−1Ĝ−1Γ̂(Ĝ0)−1 when the numbers of parameters and moment conditions
are equal.

4 Data and Descriptives

The tick-by-tick data for Ericsson B and AstraZeneca have been downloaded
from the Ecovision system and later filtered by the author. These stocks are fre-
quently traded stocks and have the highest turnover at the Stockholmsbörsen.
The stock series are collected for the period November 5-December 12, 2002.
Due to a technical problem in downloading data there are no data for Novem-
ber 12 in the time series and the first captured minute of December 5 is 1037.
To analyze the data we have deleted all trading before 0935 (trading opens
at 0930) and after 1714 (order book closes at 1720) since our intention is to
capture ordinary transactions. The transactions in the first few minutes are
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subject to a different trading mechanism while there is practically no trading
after 1714. The data are aggregated into five minute intervals of time. There
are altogether 2392 observations for both Ericsson B and AstraZeneca. The
series are exhibited in Figure 1. There are frequent zero frequencies in the
AstraZeneca series and hence the application of count data modelling is called
for.
The autocorrelation functions for both the Ericsson B and the AstraZeneca

series and their first differences are displayed in Figures 2 and 3, respectively.
For the first differences of both series, the autocorrelations are nearly zero
after lag one. The partial autocorrelation functions for both series die out
gradually for both the level and the difference series. The autocorrelation
functions for both level series suggest that a low order AR-part together with
a low order MA-part be included in the model. The differenced series suggest
that a low order AR-part together with an MA(1) parameter be in the model.
The cross-correlation function for Ericsson B and AstraZeneca is presented in
Figure 4. The correlation coefficient at lag zero is 0.28. The AstraZeneca series
leads the Ericsson B series at lag 1 with a correlation coefficient of 0.23, and
the Ericsson B series leads the AstraZeneca series at lag −1 with a similar
correlation coefficient. After a few lags the correlation function decays slowly
but without any particular pattern. It is worth noting that for higher lags the
correlations for the negative lags are generally higher than those for positive
lags.
Applying conventional Box-Jenkins methodology, we have estimated IN-

ARMA models for both the level and differenced Ericsson B and AstraZeneca
series. These results together with the results for pure but higher order INAR
model support the findings in Brännäs and Quoreshi (2004). The estimated
INARMA model does not satisfy the restrictions on parameters while higher
order INAR models are not successful in eliminating serial correlation. The
estimated INAR(1) parameters in the INARMA models for both Ericsson B
and AstraZeneca are close to 1 indicating the presence of unit roots.
Alternatively, the positive autocorrelations and the slow hyperbolic decay

in the auto-correlation functions may suggest a long memory model. There are
several ways of studying whether these data series have long memory properties
or not. Based on the variance time function

R(k) = k
σ21
σ2k

, k ≥ 1

where σ2k = V (yt − yt−k) and σ2k ∼ O(k2d−1) for an I(d) process, a test for
the presence of I(d) can be conducted (Diebold, 1989). The growth in R(k) is
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Figure 1: Time series plots for Ericsson B (mean 58.64, variance 1193.70, max-
imum 249) and AstraZeneca (mean 6.64, variance 34.38, maximum 64) for the
period November 5-December 12, 2002.
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Figure 2: Autocorrelation functions from lag one for the Ericsson B series and
its first difference.
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Figure 3: Autocorrelation functions from lag one for the AstraZeneca series
and its first difference.
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Figure 4: Cross-correlation function between Ericsson B and AstraZeneca from
lag 0 to ±20.

constant for d < 1/2. There is a decreasing growth rate for 1/2 < d < 1 while
an increasing growth rate for 1 < d < 3/2. For 0 < d < 1/2, the process is
called a long memory process in the sense of limn→∞

Pn
−n | ρk | = ∞, where

ρk is the autocorrelation function at lag k of yt (McLeod and Hipel, 1978). In
Figure 5, R(k) for the AstraZeneca series exhibits roughly a linear function in
k, while R(k) for the Ericsson B series initially seems to have larger increments
than for larger k. One possible way of estimating a long memory process is
based on the ARFIMA class. The estimated parameters for ARFIMA (1, d, 1)
models for both the Ericsson B and the AstraZeneca series contain non-negative
parameters. Moreover, the estimated d for the AstraZeneca series is consistent
with a long memory process while the estimated d for the Ericsson B series
indicates a process that has a mean reversion property but is not covariance
stationary.

Taken together, there is empirical justification for developing bivariate INMA
models with long lags even though these models are less parsimoniously para-
meterized.
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Figure 5: R(k) for the AstraZeneca series indicates a long memory process,
while R(k) for the Ericsson B series does not.

5 Empirical Results

Both FGLS and GMM methods are employed for estimation. FGLS turns out
to be the best in terms of residual properties. The models are estimated under
the assumption of conditional heteroskedasticity. AIC and SBIC criteria for
both univariate and bivariate models are used to select the lag length of the
BINMA model. With FGLS a BINMA(18, 16 with additional lags 20 and 22)
appears to be the best model while with GMM a BINMA(17, 15) is selected.
The standardized residuals, estimated with GMM, are serially correlated by the
Ljung-Box test statistic, while the standardized residuals based on FGLS are
serially uncorrelated by the Ljung-Box test statistic. The squared standardized
residuals from the FGLS estimator for both series do not pass the Ljung-Box
test statistic. However, the squared standardized residuals are not of particular
interest in this model since we are interested in estimating the mean number of
transactions but not in capturing the volatility property which is of particular
interest only in price processes. The Ljung-Box statistic Qn,k for a bivariate
model has a p-value close to zero at 60 degrees of freedom. This indicates that
there is remaining cross-correlation in the residual series.
The estimation results for the FGLS and GMM estimators for the final

models are given in Table 1. The estimated parameters are indexed by 1 for
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Ericsson B, while with 2 for AstraZeneca. Employing FGLS, all the estimated
BINMA coefficients are positive and highly significant. Employing GMM, all
the estimated BINMA parameters are also positive and all but one are sig-
nificant at the 5 percent level. The coefficient for AstraZeneca at lag 12 is
significant at the 10 percent level, though. For FGLS, the bα1is decrease, with
some exceptions, all the way as the lag increases, while bα2is decrease in the
same way until lag 12. After lag 12, the bα2is fluctuate around 0.06. This down-
ward trend implies that the impact of macro-economic and other common news
on both stocks are similar i.e., the intensity of trading for both stocks increases
as the news breaks out and fades away with time. We can also say that the
probability for increase in intensity of trading due to macro-economic news
is higher on both stocks as the news breaks out and decreases gradually as
time elapses. For FGLS and bα1i, a linear regression gives eα1i = 0.358− 0.019i
(R2 = 0.87). We get a better result in terms of goodness-of-fit when eα11 is
dropped from the regression. In an univariate setting, Brännäs and Quoreshi
(2004) find a similar result for the same stock, Ericsson B, but for a different
data series.
The FGLS (GMM) estimate for the correlation coefficient bρ

0|t−1 is 0.15
(0.68). The large difference between the estimated correlation coefficient from
the two estimators is due to the large difference in variances for the AstraZeneca
series. The corresponding correlation between y1t and y2t in the sample is 0.28.
For FGLS (GMM), the bα1i estimates give a mean lag of 5.18 (5.52) and a

median lag of 4 (5), while the bα2i estimates give a mean lag of 4.93 (3.78) and
a median lag of 3 (3).3 Since the used data are aggregates over five minutes
intervals, the mean lags must be multiplied by 5 to express them in terms of
minute. Hence, for FGLS, the bα1i estimates give a mean reaction time of 25.91
minutes and a median reaction time of 20 minutes for Ericsson B, while the
corresponding mean and median for AstraZeneca are 24.64 and 15 minutes,
respectively. Hence, for the measurement of reaction time, the choice of mean
or median lag matters, specially for the FGLS estimator.4 In an earlier study,
in a univariate model it is found that the mean reaction time for Ericsson
B is 15.8 minutes and the corresponding median is 14 minutes (Brännäs and
Quoreshi, 2004). There are several possible explanations for these differences

3As measures of reaction times to macroeconomic news/rumors in the {ujt} sequence we
use the mean lag

qj
i=0 iαji/w, where w =

qj
i=0 αji and where αj0 = 1. Alternatively, we

use the median lag, which is the smallest k such that k
i=0 αji/w ≥ 0.5.

4For aggregated data into 10 minute intervals of time we also estimate a BINMA(13, 11)
model employing FGLS. The estimates give a mean reaction time of 28, 38 minutes and a
median reaction time of 21.66 minutes for Ericsson B The corresponding mean and median
for AstraZeneca are 16.66 and 12 minutes, respectively.
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Table 1: Results for BINMA models for Ericsson B and AstraZeneca estimated
by FGLS and GMM.

Ericsson B AstraZeneca

FGLS GMM FGLS GMM

Lag bα1i s.e. bα1i s.e. Lag bα2i s.e. bα2i s.e.

1 0.453 0.029 0.576 0.032 1 0.253 0.025 0.218 0.053

2 0.335 0.025 0.501 0.033 2 0.128 0.021 0.142 0.030

3 0.283 0.024 0.446 0.029 3 0.158 0.022 0.376 0.064

4 0.231 0.022 0.382 0.029 4 0.137 0.021 0.108 0.033

5 0.234 0.022 0.436 0.028 5 0.119 0.021 0.096 0.027

6 0.266 0.023 0.455 0.033 6 0.158 0.022 0.125 0.036

7 0.192 0.021 0.370 0.027 7 0.124 0.021 0.098 0.026

8 0.180 0.021 0.356 0.028 8 0.081 0.020 0.087 0.025

9 0.189 0.021 0.269 0.024 9 0.105 0.020 0.097 0.026

10 0.188 0.021 0.306 0.024 10 0.085 0.020 0.104 0.024

11 0.118 0.020 0.196 0.022 11 0.065 0.020 0.072 0.021

12 0.123 0.020 0.179 0.020 12 0.046 0.020 0.044 0.028

13 0.103 0.020 0.119 0.021 13 0.066 0.020 0.045 0.023

14 0.092 0.020 0.132 0.022 14 0.061 0.020 0.053 0.023

15 0.084 0.020 0.118 0.025 15 0.097 0.020 0.076 0.022

16 0.098 0.020 0.150 0.024 16 0.072 0.020

17 0.070 0.020 0.081 0.022 20 0.054 0.020

18 0.040 0.019 22 0.047 0.020

bλ1 13.54 0.320 9.95 3.18 bλ2 2.31 0.032 2.867 0.91bσ21 550.96 746.53 38.71 bσ22 22.75 10.57 2.81bϕ 50.17 98.79 28.56 bρ
0|t−1 0.15 0.68

LB1,30 34.67 96.39 LB2,30 18.41 184.71

LB2
1,30 143.90 151.12 LB2

2,30 67.70 36.69
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in mean and median reaction time. First, the time gap between the data sets
used in these studies is 4 months. Second, the data used in this paper are
aggregated into five minute intervals of time while the corresponding interval is
one minute in Brännäs and Quoreshi (2004). Third, the data used in Brännäs
and Quoreshi (2004) are collected in the period July 2 − 22, 2002 that is one
month after the decision of issuing new shares, while the data used in this study
are collected after about two months of the realization of new issuing shares.
Hence, we may expect to have more intensity in trading in the former period
than the latter.

6 Concluding Remarks

This study introduces a bivariate integer-valued moving average model (BINMA)
and applies the BINMA model to the number of stock transactions in intra-
day data. The BINMA model allows for both positive and negative correlations
between the count data series. The conditional and unconditional first and sec-
ond moments are given. The study shows that the correlation between series
in the BINMA model is always smaller than 1 in an absolute sense. For the
number of transactions in Ericsson B and AstraZeneca, we find promising and
less promising features of the model. The conditional mean, variance and co-
variance have successfully been estimated. The standardized residuals based on
FGLS are serially uncorrelated. But the model could not eliminate the serial
correlation in the squared standardized residual series that, however, is not of
particular interest in this study. Further study is required to eliminate that
serial correlation. One way of getting possibly better performance in elimi-
nating serial correlation might be using the extended model, i.e. letting λj or
σ2j be time-varying. In a univariate setting, by letting λ vary with time, the
serial correlation reduces drastically (Brännäs and Quoreshi, 2004). Alterna-
tively, by introducing non-diagonal A matrices as in (8), we could allow for an
asymmetric flow of news from say Ericsson B to AstraZeneca but not the other
way.
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Appendix

Proposition: If αji ∈ (0, 1), then
| ρ

0
|< 1.

Proof: By applying the Cauchy-Schwarz inequality we can show for ρ
0
that

| ϕ− λ1λ2 |≤ λ
1/2
1 λ

1/2
2 .

Hence it will be sufficient to proof the proposition, if we can show that

(1 +

min(q1,q2)X
1

α1iα2i) < (1 +

q1X
1

α1i)
1/2(1 +

q2X
1

α2i)
1/2.

Assume that a, b, c and d are all positive integers. Assume further that
b > a, d > c and a/b > c/d. Then we can write the following inequalities

c

d
a <

c

d
b (1)

⇒ ac

bd
<

c

d
<

a

b
(2)

⇒ 1 +
ac

bd
< 1 +

c

d
< 1 +

a

b
(3)

⇒ (1 +
ac

bd
)2 < (1 +

c

d
)(1 +

c

d
) (4)

⇒ (1 +
ac

bd
)2 < (1 +

c

d
)(1 +

a

b
) (5)

⇒ (1 +
ac

bd
) < (1 +

c

d
)1/2(1 +

a

b
)1/2. (6)

Since a/b, c/d ∈ (0, 1), we can replace a/b and c/d by α1 and α2. By relaxing
the assumption that a/b > c/d, we can write

α1α2 < min(α1, α2) (7)

⇒ (1 + α1α2) < (1 + α1)
1/2(1 + α2)

1/2. (8)

Using (2), (3), (6), (8) and (7) and by introducing index for α, we can generalize
the idea and show that

α1iα2i < min(α1i, α2i)

⇒ (1 +

min(q1,q2)X
1

α1iα2i) < (1 +

min(q1,q2)X
1

α1i)
1/2(1 +

min(q1,q2)X
1

α2i)
1/2

⇒ (1 +

min(q1,q2)X
1

α1iα2i) < (1 +

q1X
1

α1i)
1/2(1 +

q2X
1

α2i)
1/2
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1 Introduction

This paper introduces a Vector Integer-Valued Moving Average (VINMA) model.
The VINMA is developed to capture covariance in and between stock trans-
actions time series. Each transaction refers to a trade between a buyer and a
seller in a volume of stocks for a given price. A transaction is impounded with
information such as volume, price and spread. The trading intensity or the
number of transactions for a fixed interval of time and the durations can be
seen as inversely related since the more time elapses between successive trans-
actions the fewer trades take place. Easley and O’Hara (1992) shows that a low
trading intensity implies no news. Engle (2000) models time according to the
autoregressive conditional duration (ACD) model of Engle and Russell (1998)
and finds that longer durations are associated with lower price volatilities. One
obvious advantage of the VINMA model over extensions of the ACD model is
that there is no synchronization problem due to different onsets of durations
in count data time series. Hence, the spread of shocks and news is more easily
studied in the current framework.

The VINMA allows for both negative and positive correlation in the count
series and the integer-value property of counts is taken into account. The
VINMA model arises from the integer-valued autoregressive moving average
(INARMA) model, which is related to the conventional ARMA class of Box
and Jenkins (1970). The INARMA model for pure time series is independently
introduced by McKenzie (1986) and Al-Osh and Alzaid (1987). An important
difference between the continuous variable vector MA (VMA), a special case of
vector ARMA model, and the VINMA model is that the latter has parameters
that are interpreted as probabilities and hence the values of the parameters are
restricted to unit intervals. An introductory treatise of count data is available
in, e.g., Cameron and Trivedi (1998).

Until now, the only studies based on the INMA class for intra-day transac-
tions data appear to be Brännäs and Quoreshi (2004) and Quoreshi (2006ab).
Quoreshi (2006a) develops a bivariate integer-valued moving average (BINMA)
model that satisfies the natural conditions of a count data model. This model
is employed to measure the reaction time for news or rumors and how new
information is spread through the system. The VINMA model is more general
than the BINMA model and enables the study of spillover effects of news from
one stock to the other.



2 VINMA and Number of Stock Transactions

2 The VINMA Model

Assume that there are M intra-day series, y1t, y2t, . . . , yMt, for the number of
stock transactions in t = 1, . . . , T time intervals. Assume further that the de-
pendence between yit and yjt, i 6= j, emerges from common underlying factor(s)
such as macro-economic news, rumors, etc. Moreover, news related to the yjt
series may also have an impact on yit and vice versa.
The covariation within and between the count data variables can be mod-

elled by a VINMA(q) model, with q = max(q1, q2, . . . , qM ), which can be writ-
ten on the form⎛⎜⎜⎜⎝

y1t
y2t
...

yMt

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
u1t
u2t
...

uMt

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

α111 α121 · · · α1M1

α211 α221 α2M1

...
...

...
αM11 αM21 αMM1

⎞⎟⎟⎟⎠ ◦
⎛⎜⎜⎜⎝

u1t−1
u2t−1
...

uMt−1

⎞⎟⎟⎟⎠+ . . .

+

⎛⎜⎜⎜⎝
α11q α12q · · · α1Mq

α21q α22q α2Mq

...
...

...
αM1q αM2q αMMq

⎞⎟⎟⎟⎠ ◦
⎛⎜⎜⎜⎝

u1t−q
u2t−q
...

uMt−q

⎞⎟⎟⎟⎠ (1a)

or compactly as

yt = ut +A1 ◦ ut−1 + . . .+Aq ◦ ut−q. (1b)

The integer-valued innovation sequence {ut} is assumed independent and iden-
tically distributed (iid) with E (ut) = λ =(λ1, . . . , λM )

0 and Cov(ut) = Ω.
Obviously, there is reason to expect the Ai matrices to become sparser as i
increases.
The binomial thinning operator distinguishes the VINMA model from the

VMA model. By employing the binomial thinning operator in (1a-b) we ac-
count for the integer-value property of count data. The operator can be written

A ◦ u =

⎛⎜⎝
PM

i=1 α1i ◦ ui
...PM

i=1 αMi ◦ ui

⎞⎟⎠ (2)

where αki ◦ ui =
Pui

j=1 zjki. The {zjki} is assumed to be an iid sequence of
0-1 random variables with Pr(zjki = 1) = αki = 1− Pr(zjki = 0) and the zjki
and ui are assumed to be independent. Since αki ∈ [0, 1], αki ◦ ui ∈ [0, ui].
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Some conditional and unconditional moment properties of αki ◦ ui and A ◦ u
are given in the Appendix.
For the covariance matrix Ω we assume

Ωij = Cov(uit, ujs) =

½
σij − λiλj , for t = s

0, for t 6= s

with σij = E(uitujt), i 6= j, and σij = σ2i = E(u2it), i = j. The off-diagonal
elements Ωij , i 6= j, can be positive or negative depending on the relative sizes
of σij versus λiλj .
Retaining the previous assumptions, the conditional (on the previous ob-

servations, Yt−1 = y1t−1, y1t−2, ..., y2t−1, y2t−2, ....) first and second order mo-
ments for the VINMA(q) model are, in analogy with Brännäs and Hall (2001)
and Quoreshi (2006a),

E(yt|Yt−1) = Et|t−1 = λ+

qX
i=1

Aiut−i (3a)

Γt,t−k|t−1 = E[(yt −Et|t−1)(yt−k −Et−k|t−k−1) | Yt−1] (3b)

=

½
Ω+

Pq
i=1Hit, k = 0

0, otherwise

where diag(Hit) = Biut−i with Bi an M ×M matrix with elements (Bi)jk =

αjki(1 − αjki). Since the conditional variance varies with ut−i there is con-
ditional heteroskedasticity. When M = 2 and matrices Ai are diagonal the
VINMA(q) collapses into the BINMA(q1,q2) model of Quoreshi (2006a).
The unconditional first and second order moments for VINMA(q) model

can be written

Eyt =

"
I+

qX
i=1

Ai

#
λ (4a)

Cov(yt,yt−k) =

⎧⎨⎩
Ω+

Pq
i=1AiΩA

0
i +

Pq
i=1Gi, for k = 0

AkΩ+
Pq

i=1Ak+iΩA
0
i, for k = 1, 2, . . . , q

0, for | k |> q

(4b)

with diag(Gi) = Biλ.
We may wish to include explanatory variables in the VINMA(q) model

setup. This is most easily done by introducing a time-varying λt (Brännäs,
1995)

λjt = exp(xjtβj) ≥ 0, j = 1, . . . ,M. (5)
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Previous prices, etc. are included in xjt. To obtain a more flexible conditional
variance specification in (3b) we may let σ2j become time dependent σ

2
jt. Al-

lowing σ2jt to depend on past values of σ
2
jt, ujt, σ

2
it and uit, for i 6= j, and

explanatory variables, using an exponential form, we may specify (cf. Nelson,
1991)

diag (Ωt) = exp

"
φ0 +

PX
i=1

Φidiag (Ωt−i) (6)

+

QX
i=1

Θidiag
¡eut−ieu0t−i¢+ RX

i=1

Ψix
0
t−i

#

where eut−i = ut−i − λt−i. The φ0 is an M vector with elements φj0, Φi, Θi

and Ψi are M ×M matrices.

3 Estimation

As we specify the model with first and second order moment conditions the
conditional least squares (CLS), the feasible generalized least squares (FGLS)
and the generalized method of moments (GMM) estimators are first hand can-
didates for estimation. Here, we only consider the CLS and FGLS estimators.
The CLS and FGLS have the residual

e1t = yt −E(yt|Yt−1) (7)

in common and both the CLS and FGLS estimators of ψ = (ψ01,ψ
0
2, . . . ,ψ

0
M )

0

with ψj containing the α-parameters of the jth equation minimize a criterion
function of the form

S =
TX

t=q+1

e01tcW−1
t e1t, (8)

where e1t = (e11t, e21t, . . . , eM1t)
0, with respect to the unknown parameters.

For CLS, cWt = I, while for FGLS cWt = bΓt,t−k|t−1, where bΓt,t−k|t−1 is a esti-
mate of the conditional covariance matrix in (3b). To calculate the sequences
{e1t} we employ e1t = ut − λt.
The conditional variance and the covariance prediction errors

ej2t = e2j1t − σ2jt −
qX

i=1

MX
k=1

αjki(1− αjki)ukt−i (9)

ej3t = ei1tej1t −Ωij , for i 6= j (10)
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are used for FGLS estimation. Sj2 =
PT

t=s e
2
j2t and Sj3 =

PT
t=s e

2
j3t, where

s = max(q, P,Q, R)+1, are minimized with respect to the parameters of the
function σ2jt and σij and with the CLS estimates for the jth equation bψj andbujt kept fixed. For time invariant Ω a simple and obvious moment estimator

bΩ = (T − s)
−1

TX
t=s

"
(e01te1t)−

qX
i=1

Hit

#

follows from (3b). The covariance matrix estimators for CLS and FGLS are

Cov(bψCLS) = (
TX
t=s

∂e1t
∂ψ0

∂e1t
∂ψ

)−1

Cov(bψFGLS) = (
TX
t=s

∂e1t
∂ψ0

eΓ−1t,t−k|t−1 ∂e1t∂ψ
)−1.

The eΓt,t−k|t−1 is the covariance matrix for the residual series from FGLS esti-
mation.

4 Empirical Results

Tick-by-tick data for Ericsson B and AstraZeneca are aggregated over five
minute intervals of time. The covered period is November 5-December 12,
2002. Since our intention is to capture ordinary transactions we have deleted
trading before 0935 (trading opens at 0930) and after 1714 (order book closes at
1720). There are altogether 2392 observations for each stock series. Both CLS
and FGLS estimators are employed for the VINMA model and the AIC crite-
rion is used to find lag lengths for the VINMA(q) model. The FGLS estimator
turns out to be the better one in terms of eliminating serial correlations. The
parameters for Ericsson B (α11i) and AstraZeneca (α22i) estimated by FGLS
are presented in Figure 1 (left panel). All estimates are positive and significant
at the 5 percent level. The parameters to capture spillover effects from As-
traZeneca to Ericsson B (α12i) and from Ericsson B to AstraZeneca (α21i) are
presented in Figure 1 (right panel). About 19 percent of the estimated mean
transactions for AstraZeneca is due to spillover effects while about 2 percent of
the estimated mean transactions for Ericsson B is due to spillover.1 The α21i
are all significant until lag 16 except for lags 6−8 and 13, while the α12i are all

1To calculate the percent of mean transactions for yj due to spillover effect from yk we
employ 100 · ( q

i=0 αjkiukt−i/E(yjt|Yt−1)).
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Figure 1: The circles and the triangles are the moving average parameters
for Ericsson B (bλ1 = 13.16) and AstraZeneca (bλ2 = 1.97) (left figure). The
solid circles capture the impact of AstraZeneca on Ericsson B while the squares
capture the impact of Ericsson B on AstraZeneca (right figure).

significant until lag 9 except for lags 1, 3− 5 and 7. This implies that Ericsson
B influences AstraZeneca for a longer period of time than is the case in the
other direction.
The estimation results for the VINMA and BINMA (see Quoreshi, 2006a)

models are summarized in Table 1. For FGLS, the VINMA model is marginally
better than the BINMA model in terms of goodness of fit. For the VINMA
model, the adjusted R2 for Ericsson B increases from the BINMA model by 1.1
percent while it increases by 4.9 percent for AstraZeneca. It is found that news
related to AstraZeneca Granger-causes Ericsson B and vice versa. The condi-
tional correlations between the stock series at lag zero estimated with VINMA
and BINMA models are 0.16 are 0.15, respectively. This implies that the in-
tensity of trading for both stocks moves in the same direction, i.e. increases
or decreases, due to macroeconomic news and news related to a specific stock.
The corresponding estimated unconditional correlation for the VINMA model
is 0.21 while the correlation between the two stock series in the sample is 0.28.
For FGLS (CLS), the α11i and α22i estimates give a mean reaction time

(RTm) of 26.07 (26.21) and 23.23 (17.23) minutes, respectively.2 For FGLS
(CLS), the α11i and α22i estimates give a median reaction (RTme) time of 20
(20) and 15 (10), respectively. Hence, for the measurement of reaction time,
the choice of mean or median reaction time matters.

2As measures of reaction times to macroeconomic news/rumors in the {ujt} sequence
on yjt we use the mean lag

qj
i=0 iαjji/w, where w =

qj
i=0 αjji and where αjj0 = 1.

Alternatively, we use the median lag, which is the smallest k such that k
i=0 αjji/w ≥ 0.5.
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Table 1: Results for VINMA and BINMA models for Ericsson B (Stock 1) and
AstraZeneca (Stock 2).

VINMA BINMA
CLS FGLS FGLS

Stock 1 Stock 2 Stock 1 Stock 2 Stock 1 Stock 2

R
2

0.505 0.209 0.504 0.231 0.498 0.221

RTm 26.21 17.12 26.07 23.23 25.91 24.64

RTme 20.00 10.00 20.00 15.00 20.00 15.00

LB30 31.58 70.26 32.87 17.96 34.67 18.41bρ0|t−1 0.159 0.160 0.150

5 Concluding Remarks

This study introduces a vector integer-valued moving average (VINMA) model.
The conditional and unconditional first and second order moments are ob-
tained. The VINMA model allows for both positive and negative correlations
between the counts. The model is capable of capturing the covariance between
and within intra-day time series of transaction frequency data due to macroeco-
nomic news and news related to a specific stock. In its empirical application, we
found that the spillover effect from Ericsson B to AstraZeneca is larger than
that from AstraZeneca to Ericsson B. The FGLS estimator performs better
than the CLS estimator in terms of eliminating serial correlations.



8 VINMA and Number of Stock Transactions

Appendix

Conditionally on the integer-valued ui, αki ◦ ui is binomially distributed with
E(αki ◦ui | ui) = αkiui, V (αki ◦ui | ui) = αki(1−αki)ui and E[(αki ◦ ui)(αkj◦
uj)| ui, uj ]= αkiαkjuiuj , for i 6= j. Unconditionally it holds that E(αki ◦ui) =
αkiλi, V (αki ◦ ui) = α2kiσ

2
i
+ αki(1 − αki)λi and E [(αki ◦ ui) (αkj ◦ uj)] =

αkiαkjE (uiuj), for i 6= j, where E(ui) = λi and V (ui) = σ2i .
Assuming independence between and within the thinning operations, con-

ditionally on M × 1 integer-valued vector u, A ◦ u has

E (A ◦ u | u) = Au

E [(Ai ◦ ut−i)(Aj ◦ ut−j)0 | ut−i,ut−j ] =

½
Aiut−iu0t−iAi

0 +Hit, for i = j

Aiut−iu0t−jAj
0, for i 6= j

where the A is a M ×M matrix with elements αki ∈ [0, 1] and diag(Hit) =

But−i. The B is an M ×M matrix with elements αki(1 − αki). The corre-
sponding unconditional first and second order moments are

E (A ◦ u) = AE (u)= Aλ

E [(Ai ◦ ut−i)(Aj ◦ ut−j)0] =

½
AiE

¡
ut−iu0t−i

¢
Ai

0 +G, for i = j

AiE
¡
ut−iu0t−j

¢
Aj

0, for i 6= j

where diag(G) = Bλ.
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1 Introduction

This paper focuses on modelling the long memory property of time series of
count data and on applying the model in a financial setting. The long range
dependence or the long memory implies that the present information has a
persistent impact on future counts. Note that the long memory property is
related to the sampling frequency of a time series. A manifest long memory
may be shorter than one hour if observations are recorded every minute, while
stretching over decades for annual data. A time series of count data is an
integer-valued and non-negative sequence of count observations observed at
equidistant instants of time. In the current context series typically have small
counts and many zeros. Models for long memory, continuous variable time
series are not applicable for integer-valued time series. This is so with respect
to both interpretation and inference.
The long memory phenomenon in time series was first considered by Hurst

(1951, 1956). In these studies, he explained the long term storage require-
ments of the Nile River. He showed that the cumulated water flows in a year
depends not only on the water flows in recent years but also on water flows in
years much prior to the present year. Mandelbrot and van Ness (1968) explain
and advance the Hurst’s studies by employing fractional Brownian motion. In
analogy with Mandelbrot and van Ness (1968), Granger (1980), Granger and
Joyeux (1980) and Hosking (1981) develop Autoregressive Fractionally Inte-
grated Moving Average (ARFIMA) models to account for the long memory in
time series data. Ding and Granger (1996) point out that a number of other
processes can also have the long memory property. A recent empirical study
regarding the usefulness of ARFIMA models is conducted by Bhardwaja and
Swanson (2005), who found strong evidence in favor of ARFIMA in absolute,
squared and log-squared stock index returns.
In this paper, we develop a model to account for the long memory prop-

erty in a count data framework. We propose an integer-valued ARFIMA
(INARFIMA) model and apply the model to high frequency stock transac-
tion data. Each transaction refers to a trade between a buyer and a seller in a
volume of stocks for a given price. The model can be used to measure the reac-
tion times for, e.g., macro-economic news or rumors and captures information
spread through the system.
The paper is organized as follows. The INARMA and ARFIMA models

are discussed and INARFIMA models are introduced in Section 2. The con-
ditional and unconditional moment properties of the INARFIMA models are
obtained. A discussion on model identification is given in Section 3. The es-
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timation procedures, CLS and FGLS for unknown parameters are discussed in
Section 4. A detailed description of the empirical data is given in Section 5.
The empirical results for the stock series are presented in Section 6 and the
concluding comments are included in the final section.

2 Model

Many economic time series, e.g., the number of transactions, the number of
car passes during an interval of time, comprise integer-valued count data. It
is reasonable to assume that this type of data may also have long memory.
However, if employing the previous workhorse, the ARFIMA model, integers
can not be generated. By combining features of the INARMA and ARFIMA
models, we are able to introduce a count data (integer-valued) autoregressive
fractionally integrated moving average (INARFIMA) model that takes account
of both the integer-valued property of counts and incorporates the long memory
property.

2.1 The INARFIMA Model

The INARMA model for a time series y1, . . . , yT is introduced independently
by McKenzie (1986) and Al-Osh and Alzaid (1987). The INARMA model can
be written

yt − α1 ◦ yt−1 − . . .− αp ◦ yt−p = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q. (1)

Here, the binomial thinning operator is the key device enabling integer-values
to arise in the model. The operator can be written

ϕ ◦ v =
vX
i=1

zi (2)

with {zi}vi=1 an iid sequence of 0-1 random variables and with zi and v as inde-
pendent variables. It holds that Pr(zi = 1) = ϕ = 1−Pr(zi = 0). Conditionally
on the integer-valued v, ϕ ◦ v is binomially distributed with E(ϕ ◦ v | v) = ϕv

and V (ϕ ◦ v | v) = ϕ(1 − ϕ)v. Unconditionally it holds that E(ϕ ◦ v) = ϕµ

and V (ϕ ◦ v) = ϕ2σ2v +ϕ(1−ϕ)µ, where E(v) = µ and V (v) = σ2v. Obviously,
ϕ◦v ∈ [0, v]. In equation (1) the {ut} is an iid sequence of non-negative integer-
valued random variables with E(ut) = λ and V (ut) = σ2. Since α1, . . . , αp and
β1, . . . , βq are all thinning probabilities, they are restricted to fall in unit in-
tervals.
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Granger and Joyeux (1980) and Hosking (1981) independently propose
ARFIMA models. We say that {yt, t = 1, 2, . . . , T} is an ARFIMA (0, d, 0)
model if

(1− L)dyt = at (3)

where L is a lag operator and d is a real number. The {at} is a white noise
process of random variables with mean E(at) = 0 and variance V (at) = σ2a.
Employing binomial series expansion, we can write

(1− L)d = ∆d = 1−
∞X
i=1

(i− 1− d)!

i!(−d− 1)!L
i = 1−

∞X
i=1

Γ(i− d)

Γ(i+ 1)Γ(1− d)
Li (4)

and correspondingly

∆−d = 1 + dL+
1

2
d(1 + d)L2 +

1

6
d(1 + d)(2 + d)L3 − . . .

= 1 +
∞X
i=1

(i+ d− 1)!
i!(d− 1)! Li = 1 +

∞X
i=1

Γ(i+ d)

Γ(i+ 1)Γ(d)
Li (5)

where Γ(n + 1) = n! and i = 1, 2, . . .. The ∆d is needed for AR(∞) and the
∆−d is needed for MA(∞) representations of the ARFIMA (0, d, 0) model or for
more general ARFIMA(p, d, q) models. If d < 1/2, d 6= 0, the ARFIMA(0, d, 0)
model is said to have long memory. The model has mean reversion when
d < 1, while the model has mean reversion but is not covariance stationary
when d ∈ (1/2, 1). A survey of the ARFIMA literature can be found in Baillie
(1996).
Combining the ideas of the INARMA model with fractional integration is

not quite straightforward. Direct use of (4) or (5) will not give integer-values
since multiplying an integer-valued variable with a real-valued d can not pro-
duce an integer-valued result and this alternative is hence ruled out. In order
to set up an operational model we may instead depart from the binomial ex-
pansion expression and be careful with placing the thinning operator properly.
Importantly, d and functions of d will in this setting be part of the binomial
thinning operations and hence there will be a shift in interpretation. In anal-
ogy with Granger and Joyeux (1980) and Hosking (1981) we can consider the
following INMA(∞) representation of the INARFIMA (0, d, 0) model

yt = ut + d1 ◦ ut−1 + d2 ◦ ut−2 + d3 ◦ ut−3 + . . .

yt = (1 + d1 ◦ L+ d2 ◦ L2 + d3 ◦ L3 + . . .)ut (6)

yt = (1− L◦)−dut
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where di = Γ(i+ d)/ [Γ(i+ 1)Γ(d)] , i ≥ 1 and the notation (L◦)i = ◦ (L)i, for
i > 0 is introduced. The (1 − L◦)−d is a slight alteration of (5). By this, we
take account of the integer-valued property. The coefficients di in expression
(6) are considered thinning probabilities and hence we require d ∈ [0, 1].
Employing the same idea, we can write

(1− L◦)dyt = ut (7)

for an INAR(∞) representation of the INARFIMA (0, d, 0) model. Here, (1−
L◦)d is a slight rearrangement of (4). Note that the models in (6) and (7) are
two different representations of the INARFIMA (0, d, 0) model and can not be
considered as inversely related due to the thinning operations. The models have
similar first order moments but differ in second order moments. Since the sec-
ond order moments for an INMA(∞) representation of the INARFIMA are less
complicated to obtain than those of a corresponding INAR(∞) representation
the former is employed throughout the paper.
We say that {yt, t = 1, 2, . . . , T} is an INARFIMA (p, d, q) model when

α(L◦)yt = β(L◦)(1− L◦)−dut. (8)

In (8) α(L◦) = 1−α1◦L−α2◦L2−. . .−αp◦Lp and β(L◦) = 1+β1◦L+β2◦L2+
. . .+ βq ◦Lq, are lag polynomials of orders p and q, respectively. Note that we
require αi, βj , d ∈ [0, 1] , for i > 0 and j ≥ 0, for an INARFIMA(p, d, q) model.
Hence, the AR, MA and fractional integration parameters of an INARFIMA
model are more restricted than the corresponding parameters of the ARFIMA
model. When d = 0, the INARFIMA(p, d, q) becomes an INARMA(p, q) while
for d = 1 it turns into an INARIMA(p, 1, q).
In analogy with Brännäs and Hall (2001), who give the conditional mo-

ments for an INMA model, we can write the conditional first and second order
moments for the INARFIMA(p, d, q)

E(yt|Yt−1) =

pX
j=1

αjyt−j + λ+

qX
j=1

βjut−j +
qX

j=0

βj

∞X
i=1

diut−i−j (9a)

V (yt|Yt−1) =

pX
j=1

αj(1− αj)yt−j + σ2 +

qX
j=1

βj(1− βj)ut−j

+

qX
j=0

βj

∞X
i=1

di(1− βjdi)ut−i−j . (9b)

Note that the moments are conditioned on only the previous observations,
Yt−1 = (yt−1, yt−2, . . .). Whether the conditional variance is overdispersed,
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underdispersed or equidispersed depends on the relative sizes of σ2 and λ. The
effects of yt−j and ut−i, j, i ≥ 1 are larger on the mean than on the variance
since αj > αj(1 − αj), βj > βj(1 − βj) and βj

P∞
i=1 di > βj

P∞
i=1 di(1 −

βjdi), j ≥ 0. Since the conditional variance varies with yt−j and ut−i there is
a conditional heteroskedasticity property for which we can use the shorthand
notation ARFIMACH(p, d, q) (cf. the notations ARCH(p) and MACH(q)).
The second order unconditional moments of a general INARFIMA(p, d, q)

model are quite complicated. In empirical applications, INARFIMA(p, d, q)
models with low p and q orders are likely to be of most interest. So, instead of
studying the general INARFIMA(p, d, q), we focus on INARFIMA(p, d, 0) and
INARFIMA(0, d, q) models in some detail.
First, consider the INARFIMA(0, d, q) model

yt = β(L◦)(1− L◦)−dut. (10)

Assuming independence between and within the thinning operations and that
{ut} is an iid sequence with mean λ and variance σ2, the unconditional mean
and variance of an INARFIMA(0, d, p) are

E(yt) = λD

qX
j=0

βj (11a)

V (yt) = λ

qX
j=0

βj

⎛⎝ ∞X
i=1

di(1− diβj) +

qX
j=0

(1− βj)

⎞⎠ (11b)

+σ2D2

qX
j=0

β2j

withD = 1+
P∞

i=1 di, D
2 = 1+

P∞
i=1 d

2
i and di = Γ(i+d)/ [Γ(i+ 1)Γ(d)] , i ≥ 1.

It is clear from (10a-b) that the mean and variance only generate positive values
when d ∈ [0, 1] since all βj are positive. Since the λ and σ2 are not functions
of time and

P∞
i=1 di ≥

P∞
i=1 d

2
i and

P∞
i=1 di >

P∞
i=1 di(1 − di) for d ∈ [0, 1],

it is sufficient that
P∞

i=1 di < ∞ for {yt} to be a stationary sequence. Note
that for d ∈ (0, 1) the di decreases as the lag i increases. Note also that we
can not determine values for di when i is large since both Γ(i+ d) and Γ(i+1)
approach infinity. However, we can approximate di for large i with i(d−1)/Γ(d)
(Granger and Joyeux, 1980 and Hosking, 1981). When d = 0.6, 0.4 and 0.2 the
approximate values for d9999−d10000 = 6.7e−7, 1.1e−7 and 1.1e−8, respectively.
Hence, the function of d converges. For an invertible INARMA(0, d, q) model,
di < 1 and βj < 1 for i, j > 0 are required.
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General forms of the autocorrelation function for INARFIMA(0, d, q) can
be obtained, but expressions are complicated. For simplicity, we consider the
autocorrelation function for an INARFIMA(0, d, 1), which is

ρk = σ2V
−1
(yt)

2X
j=0

Bj

Ã
dk+j−1 +

∞X
i=1

didi+k+j−1

!
, k ≥ 1 (12)

with B0 = B2 = β1, B1 = β0 + β21 and d0 = 1.
The INARFIMA(p, d, 0) model can be written

α(L◦)yt = (1− L◦)−dut. (13)

Retaining previous assumptions, we can give the mean and variance as

E(yt) = λD

⎛⎝1− pX
j=1

αj

⎞⎠−1 (14a)

V (yt) =

⎛⎝1− pX
j=1

α2j

⎞⎠−1 "λ ∞X
i=1

di(1− di) + σ2D2+ (14b)

+

pX
j=1

αj(1− αj)E(yt)

⎤⎦
with di = Γ(i + d)/ [Γ(i+ 1)Γ(d)]. Note that all di are positive for d ∈ [0, 1].
Hence, the conditions

Pp
j=1 αj < 1 and

P∞
i=1 di <∞ must be fulfilled in order

to generate a finite and positive expected value. Note that the E(yt) and σ2

are not functions of time and
P∞

i=1 di ≥
P∞

i=1 d
2
i ,
P∞

i=1 di(1−di) for d ∈ [0, 1].
Therefore, it is sufficient that

P∞
i=1 di <∞ for {yt} to be a stationary sequence.

The parametric expression of the autocorrelation function of the INARFIMA
(1, d, 0) model is

ρk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V −1(yt)

h
αk1V (yt) + σ2

nPk
j=1 α

k−j
1 (dj +

P∞
i=1 didi+j)

+ (dk +
P∞

i=1 didi+k)}] , k ≥ 1

0, otherwise

(15)

where we set α01 equal to zero.
Autocorrelation functions for INARFIMA(1, d, 0) and INARFIMA(0, d, 1)

with different d values are exhibited in Figure 1. All autocorrelation functions
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Figure 1: The autocorrelation functions for INARFIMA(1, d, 0) (left figure)
with α = 0.4, λ = 2 and σ2 = 50 and INARFIMA(0, d, 1) (right figure) with
β = 0.4 and the same values for the λ and σ2.

have slower decay after lag 1 and approach zero very slowly. Given λ and σ2, the
higher the value of d the larger is the autocorrelation and the autocorrelations
remain higher at all lags. We conjecture, but have been unable to prove, that
for d ∈ (0, 1) the process has long memory if d < 1/2 and the process has mean
reversion but is not covariance stationary when d ∈ (1/2, 1), while the process
has mean reversion when d < 1 Baillie (1996).

2.2 Model Extension

Ding and Granger (1996) point out that a number of other processes have long
memory. Here, we extend the model in (8) to a more general form. Consider
the following representation

(b− Z)−d = b−d(1− Z/b)−d. (16)

The (1 − Z/b)d can be called a binomial series if b > 0 and Z is a number so
that | Z/b |< 1. Denoting b−d = θ(d) and Z/b = L and employing the same
idea as in (6) we can write

yt = (θ(d) ◦ L0 + θ(d)d1 ◦ L1 + θ(d)d2 ◦ L2 + θ(d)d3 ◦ L3 + . . .)ut

= θ(d) ◦ (1 + d1 ◦ L+ d2 ◦ L2 + d3 ◦ L3 + . . .)ut

= θ(d) ◦ (1− L◦)−dut (17)

where di = Γ(i + d)/ [Γ(i+ 1)Γ(d)] , i ≥ 1 and the property ϕ1 ◦ (ϕ2 ◦ v) d
=

(ϕ1ϕ2) ◦ v is employed. The coefficients in this expression are considered thin-
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ning probabilities and hence we require θ(d), d ∈ [0, 1]. Note that the parameter
θ(d) rescales di, for i ≥ 0. Here, we also use the definition of long memory and
the mean recursion property as before, i.e. for d ∈ (0, 1) we say that the model
has long memory if d < 1/2 and the model has mean reversion but is not
covariance stationary when d ∈ (1/2, 1), while the model has mean reversion
when d < 1. We denote the model in (17) INARFIMA(0, δ, 0). We say that
{yt, t = 1, 2, . . . , T} is an INARFIMA (p, δ, q) model when

α(L◦)yt = θ(δ) ◦ (1− L◦)−δβ(L◦)ut (18)

where α(L◦) and β(L◦) are defined as in (8). Note that we require αj , βj , θ(δ), δ
∈ [0, 1] , for j > 0, for an INARFIMA(p, δ, q). The unconditional first and
second moments can be given in a similar way to INARFIMA(p, d, q). The
conditional first and the second order moments for an INARFIMA(p, δ, q) are

E(yt|Yt−1) =

pX
j=1

αjyt−j + λθ(δ) + θ(δ)

qX
j=1

βjut−j (19a)

+θ(δ)

qX
j=0

βj

∞X
i=1

δiut−i−j

V (yt|Yt−1) =

pX
j=1

αj(1− αj)yt−j + θ2(δ)σ2 +

qX
j=1

θ(δ)βj(1− θ(δ)βj)ut−j

+θ(δ)(1− θ(δ))λ (19b)

+

qX
j=0

βj

∞X
i=1

θ(δ)δi(1− θ(δ)βjδi)ut−i−j .

It is sufficient that θ(δ)
P∞

i=1 δi < ∞ for {yt} to be a stationary sequence.
When θ(δ) = 1, the INARFIMA(p, δ, q) becomes an INARFIMA(p, d, q) and
hence for an invertible INARFIMA(0, δ, 0), δi < 1 for i > 0 is required.

3 Model Identification

In this section, we discuss the problem of finding an appropriate INARFIMA
model for a given time series. In Figure 2, the autocorrelation and partial
autocorrelation functions for integer-valued long memory, INARFIMA(p, d, q),
processes are illustrated. The data are generated in accordance with (8) and
Matlab codes for generating Poisson and binomial random number are used.
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Since the autocorrelations after lag 100 are very small when d, δ = 0.4 the lag
length is chosen to be 100 for the INMA(∞) representation of the INARFIMA
(0, d, 0) or the corresponding part of the INARFIMA(p, d, q) model in generat-
ing the data. The first 500 observations are discarded from 10500 observations
in order to avoid start up effects.
The identification of INARFIMA(p, d, q) models is not straightforward. The

autocorrelation function for INARFIMA(1, d, 0) and INARFIMA(1, d, 1) look
almost alike while the partial-autocorrelation functions are different. The auto-
correlation and the partial-autocorrelation functions of the INARFIMA(0, δ, 0)
are quite similar to those of an INARFIMA(0, d, 1). In general, an INARFIMA
(p, d, q) model and an INARFIMA(p, δ, q) model have more slowly decaying au-
tocorrelation functions than an INARMA(p, q). Hence, whether a time series
has a fractional integration property or not can be identified by the autocor-
relation function. But identifying the θ(d) and the p and/or q lag(s) for an
INARFIMA process is difficult by studying the autocorrelation and the partial
autocorrelation functions.
There are a number of estimation methods for and tests of long mem-

ory, e.g., variance time function (R(k)) (Diebold, 1989), rescaled range (RR)
(Hurts, 1951), modified rescaled range (MRR) (Lo, 1991), GPH (introduced
by Geweke and Porter-Hudak, 1983) and WHI tests (proposed by Künsch,
1987 and modified by Robinson 1995). The GPH and WHI are based on first
estimating d, while RR andMRR do not estimate d, to assess whether a series
has long memory or not.
By employing AIC and SBIC criteria

AIC = T ln bσ2 + 2M
SBIC = T ln bσ2 +M lnT

we can choose the lag length of the model. Here, bσ2 is the variance estimate
based on the residuals from the INARFIMA(p, d, q) model, T is the number of
observations and M = p+m+ 1, with m the chosen lag length for estimating
d.

4 Estimation

Here, we discuss methods for the estimation of the unknown parameters of
the conditional mean and variance functions for the INARFIMA(p, δ, q) model.
Since we do not assume a full density function the maximum likelihood estima-
tor is not considered. As we specify the model with first and second moment
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Figure 2: The autocorrelation and partial-autocorrelation functions for the
different INARFIMA models with α = 0.5, d = 0.4, θ(δ) = 0.5 and β =

0.5 when applicable. The autocorrelations and partial-autocorrelations for
INARFIMA(0, d, 1) and INARFIMA(0, δ, 0) are multiplied by 5 and 10, re-
spectively.
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conditions the conditional least squares (CLS), the feasible generalized least
square (FGLS), the generalized method of moments (GMM) estimators and
possibly others are candidates for estimation. Here, we only consider the CLS
and FGLS estimators. The choice of CLS is obvious since it is easy to estimate
and readily available in standard statistical softwares like SPSS. The reason for
choosing FGLS instead of GMM is that we may anticipate a better performance
of the FGLS than of the GMM estimator (Brännäs, 1995).

Brännäs and Quoreshi (2004) propose CLS and FGLS for INMA(q) and
Quoreshi (2006) for bivariate INMA with possibly a large q. Here, the moment
conditions are specified in analogy with Brännäs and Quoreshi (2004). To em-
ploy the CLS estimator, we need to specify the first moment condition for an
INARFIMA(p, δ, q), while we need both the first and the second moment con-
ditions for the FGLS estimator. The CLS estimator for an INARFIMA(p, δ, q)
has the following residual

e1t = yt − E(yt|Yt−1)

= yt −
pX

j=1

αjyt−j − λθ(δ)− θ(δ)

qX
j=1

βjut−j (20)

−θ(δ)
qX

j=0

βj

∞X
i=1

δiut−i−j

and the criterion function S1 =
PT

t=m+1 e
2
1t is minimized with respect to the

unknown parameters, i.e. ψ = (λ,α0, β0, θ(δ) and δ). Using a finite maxi-
mum lag m in (20) instead of infinite lags may have biasing effects. Due to
the omitted variables, i.e. ut−m−1, . . . , ut−∞ we may expect a positive bias-
ing effect on the parameters α0, β0, θ(δ) and δ (Brännäs and Quoreshi, 2004).
Hence, the m should be chosen large. Alternatively and equivalently, the prop-
erties E(e1t) = 0 and E(e1te1t−i) = 0, i ≥ 1 could be used. To calculate
e1t, we employ e1t = ut − λθ(δ). Note that the moment conditions for an
INARFIMA(p, d, q) can be obtained by setting θ(δ) = 1.

The parameters estimated by CLS are considered a first step of the FGLS
estimator. For the next step, the conditional variance prediction errors for
INARFIMA(p, δ, q)

e2t = (yt −E(yt|Yt−1))2 − V (yt|Yt−1) (21)
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are used. An obvious least squares estimator for σ2 is then

σ2 = θ−2(bδ) (T −m)−1
TX

t=m+1

⎡⎣be21t − pX
j=0

bαj(1− bαj)yt−j − θ(bδ)(1− θ(bδ))bλ
−

qX
j=1

θ(bδ)bβj(1− θ(bδ)bβj)ut−j − qX
j=0

bβj ∞X
i=1

θ(bδ)bδi(1− θ(bδ)bβjbδi)ut−i−j
⎤⎦

Finally, the FGLS estimator minimizes

S2 =
TX

t=m+1

e21t bV −1(yt|Yt−1) (22)

with bV (yt|Yt−1) taken as given. The covariance matrix estimators for CLS and
FGLS are:

Cov(bψCLS) =

Ã
TX

t=m+1

∂e1t
∂ψ

∂e1t
∂ψ0

!−1

Cov(bψFGLS) =

Ã
TX

t=m+1

bV −1(yt|Yt−1)∂e1t
∂ψ

∂e1t
∂ψ0

!−1
.

5 Data and Descriptives

The tick-by-tick data for Ericsson B and AstraZeneca have been downloaded
from the Ecovision system and are later filtered by the author. The stocks
are frequently traded and have the highest turnovers at the Stockholmsbörsen.
The two stock series are collected for the period November 5-December 12,
2002. Due to a technical problem in downloading data there are no data for
November 12 in the time series and the first captured minutes of December 5 are
0959 and 1037, respectively. Since we are interested in capturing the number of
ordinary transactions, we have deleted all trading before 0935 (trading opens
at 0930) and after 1714 (order book closes at 1720). The transactions in the
first few minutes are subject to a different trading mechanism while there is
practically no trading after 1714. The data are aggregated into one minute
intervals of time. For high frequency data, researchers usually use one, two,
five or ten minute intervals of time and the choice is rather arbitrary. There are
altogether 11960 observations for both the Ericsson B and AstraZeneca series.
The series together with their autocorrelation and partial-autocorrelation

functions are exhibited in Figure 3. There are frequent zero frequencies in both
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Figure 3: Time series plots for the Ericsson B (mean 11.73 variance 84.86,
maximum 88) and AstraZeneca series (mean 1.33 variance 3.75, maximum 34)
and their autocorrelation and partial-autocorrelation functions.
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series, specially in the AstraZeneca series and hence the application of count
data modelling is called for. The counts in both series fluctuate around their
means which is an indication of mean reverting processes. The autocorrelation
functions for both series suggest fractional integration.

6 Empirical Results

Both CLS and FGLS methods are employed for estimation and the AIC cri-
terion is used to select the lag lengths of the INARFIMA models. Employing
CLS and FGLS for Ericsson B an INARFIMA(0, d, 0) with m = 70 is cho-
sen while the corresponding model for AstraZeneca is INARFIMA(0, d, 0) with
m = 50. Serial correlations for the standardized residuals could however not be
eliminated. An INARFIMA(0, d, 1) gives a better result in terms of eliminating
serial correlations but the estimates of β for both series turn out negative. The
estimates of α for the INARFIMA(1, d, 0) for both series also turn out negative.
The INMA(70) and INMA(50) for Ericsson B and AstraZeneca, respectively,
turns out to be the best in terms of eliminating serial correlation for standard-
ized residuals while INARFIMA(0, δ, 0) becomes the second best for both series
and the estimated parameters are positive. The INARFIMA(0, δ, 0) is the most
parsimonious model in terms of number of parameters.1

The empirical results for INARFIMA(0, δ, 0) for both series are presented in
Table 1. For AstraZeneca, we find empirical support for long memory (δ < 0.5)
which implies that the macro-economic news or rumors have persistence impact
on the number of transactions. The impact of news on the Ericsson B series
can be interpreted in a related way. The series has a mean reversion property
but not long memory since the confidence interval for δ includes 0.5. CLS and
FGLS perform almost equally well in terms of eliminating serial correlation
from standardized residuals. The Ljung-Box statistics, LB100 and LB200, for
both stocks are larger than the critical values. The reason behind the large
values is that we could not eliminate serial correlation at a few of the lags. For
AstraZeneca we have remaining serial correlation at lags 31, 57, 59, 70, 154
and 172. The corresponding lags for Ericsson B are 49, 72, 73 and 80. We are
not able to provide an explanation to the large correlations at these lags.
In Figure 4 the functions of the fractional integration parameters and the

1We also estimate truncated INMA(∞) models with βi = θ0 exp(−θ1i) and θ0 exp(−θ1i−
θ1(i− q/2)2) for i ≥ 1. Though the truncated INMA(∞) models are also parsimonious they
performed very poorly for both series in terms of eliminating serial correlations. The Ljung-
Box statistic, LB200, for Ericsson B for the former model is 370 while for the latter model it
is 8740.
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Table 1: Results for INARFIMA(0,δ,0) models for Ericsson B and AstraZeneca
estimated by CLS and FGLS.

Ericsson B AstraZeneca

CLS FGLS CLS FGLS

Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

δ 0.490 0.021 0.490 0.019 0.372 0.041 0.372 0.046

b 3.336 0.253 3.338 0.321 7.578 1.968 7.565 2.619

θ(δ) 0.554 0.054 0.554 0.042 0.471 0.097 0.471 0.040

λ 2.309 0.104 2.309 0.093 0.578 0.042 0.578 0.038

σ2 193.1 193.2 15.82 15.82

LB100 185.5 185.5 201.6 201.6

LB200 264.2 264.2 321.2 321.2

corresponding parameters estimated with INMA(70) and INMA(50) for Erics-
son B and AstraZeneca, respectively, are exhibited. The parameters estimated
with the INARFIMA(0, δ, 0) models for both stocks look like fitted lines for
the corresponding parameters for the INMA models. Hence, we may expect
that the reaction times measured by either INMA or INARFIMA would be al-
most the same. The mean lags for Ericsson B and AstraZeneca measured with
the INARFIMA(0, δ, 0) parameters are 22.75 and 13.96 minutes, respectively,
while the corresponding mean lags with the truncated INMA are 20.28 and
12.40 minutes.2 It may appear surprising that the reaction time for Ericsson
B is longer than that of AstraZeneca despite the intensity of trading for Er-
icsson B is almost 9 times larger than that of AstraZeneca. But the result is
not that surprising if we consider the price ratio between the two stocks and
the turnover (volume times price). During the sample period, the stocks for
Ericsson B are traded at a price between SEK 7.10 and 10.40, while the stocks
for AstraZeneca are traded at a price between SEK 316.50 and 365.00. The
turnovers for the sample period for Ericsson B and AstraZeneca are 5.7 · 1013
and 3.4 · 1012, respectively.
The median lags for Ericsson B are 16 and 15 with the INARFIMA and

INMA, respectively while the corresponding median lags for AstraZeneca are

2As measures of reaction times to macroeconomic news/rumors in the {ut} sequence
we use the mean lag θ(δ) q

i=0 iδi/w, where w = θ(δ) q
i=0 δi and where δ0 = 1 for an

INARFIMA(0, δ, 0). We set θ(δ) = 1 when the parameters are estimated with an INMA(q).
Alternatively, we use the median lag, which is the smallest k such that θ(δ) k

i=0 δi/w ≥ 0.5.
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Figure 4: The parameters estimated with INARFIMA(0, δ, 0) (dashed line) and
truncated INMA(∞) models for Ericsson B and AstraZeneca.

8 and 4 minutes. Hence, in estimating mean reaction time, it does not matter
much which method we employ. But in estimating median reaction time it may
matter more. The large difference in the medians for AstraZeneca is due to the
parameter at lag 0. For an INMA(q) the parameter at lag 0 is always 1 while
the parameter for an INARFIMA(0, δ, 0) at lag 0 is θ(δ). We see in Figure 4
that the fractional integration functions start with high values and decrease
rather sharply in the beginning but decay very slowly afterward. This implies
that the trading intensity increases as the news breaks out and fades away very
slowly with time.

7 Concluding Remarks

This paper concerns modelling the long memory property in a count data frame-
work. The introduced models emerge from the ARFIMA and INARMA model
classes and hence the model is called INARFIMA. The unconditional and con-
ditional first and second moments are given. Moreover, we introduce another
process by employing an idea introduced by Granger, Joyeux and Hosking but
in a different setting. In its empirical application we find evidence of long
memory in the AstraZeneca series, while the estimated δ for Ericsson B indi-
cates a process that has a mean reversion property. CLS and FGLS estimators
perform equally well in terms of residual properties. We also find that the
trading intensity increases for both stocks when the macro-economic news or
rumors break out and the impact remains over a long period and fades away
very slowly with time. The reaction due to the macro-economic news on the
AstraZeneca series is faster than that of the Ericsson B series.
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