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Abstract

A vector integer-valued moving average (VINMA) model is introduced.
The VINMA model allows for both positive and negative correlations
between the counts. The conditional and unconditional first and second
order moments are obtained. The CLS and FGLS estimators are dis-
cussed. The model is capable of capturing the covariance between and
within intra-day time series of transaction frequency data due to macro-
economic news and news related to a specific stock. Empirically, it is
found that the spillover effect from Ericsson B to AstraZeneca is larger
than that from AstraZeneca to Ericsson B.
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1 Introduction

This paper introduces a Vector Integer-Valued Moving Average (VINMA) model.
The VINMA is developed to capture covariance in and between stock trans-
actions time series. Each transaction refers to a trade between a buyer and a
seller in a volume of stocks for a given price. A transaction is impounded with
information such as volume, price and spread. The trading intensity or the
number of transactions for a fixed interval of time and the durations can be
seen as inversely related since the more time elapses between successive trans-
actions the fewer trades take place. Easley and O’Hara (1992) shows that a low
trading intensity implies no news. Engle (2000) models time according to the
autoregressive conditional duration (ACD) model of Engle and Russell (1998)
and finds that longer durations are associated with lower price volatilities. One
obvious advantage of the VINMA model over extensions of the ACD model is
that there is no synchronization problem due to different onsets of durations
in count data time series. Hence, the spread of shocks and news is more easily
studied in the current framework.

The VINMA allows for both negative and positive correlation in the count
series and the integer-value property of counts is taken into account. The
VINMA model arises from the integer-valued autoregressive moving average
(INARMA) model, which is related to the conventional ARMA class of Box
and Jenkins (1970). The INARMA model for pure time series is independently
introduced by McKenzie (1986) and Al-Osh and Alzaid (1987). An important
difference between the continuous variable vector MA (VMA), a special case of
vector ARMA model, and the VINMA model is that the latter has parameters
that are interpreted as probabilities and hence the values of the parameters are
restricted to unit intervals. An introductory treatise of count data is available
in, e.g., Cameron and Trivedi (1998).

Until now, the only studies based on the INMA class for intra-day transac-
tions data appear to be Brännäs and Quoreshi (2004) and Quoreshi (2006ab).
Quoreshi (2006a) develops a bivariate integer-valued moving average (BINMA)
model that satisfies the natural conditions of a count data model. This model
is employed to measure the reaction time for news or rumors and how new
information is spread through the system. The VINMA model is more general
than the BINMA model and enables the study of spillover effects of news from
one stock to the other.
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2 The VINMA Model

Assume that there are M intra-day series, y1t, y2t, . . . , yMt, for the number of
stock transactions in t = 1, . . . , T time intervals. Assume further that the de-
pendence between yit and yjt, i 6= j, emerges from common underlying factor(s)
such as macro-economic news, rumors, etc. Moreover, news related to the yjt
series may also have an impact on yit and vice versa.
The covariation within and between the count data variables can be mod-

elled by a VINMA(q) model, with q = max(q1, q2, . . . , qM ), which can be writ-
ten on the form⎛⎜⎜⎜⎝

y1t
y2t
...

yMt

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
u1t
u2t
...

uMt

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

α111 α121 · · · α1M1

α211 α221 α2M1

...
...

...
αM11 αM21 αMM1

⎞⎟⎟⎟⎠ ◦
⎛⎜⎜⎜⎝

u1t−1
u2t−1
...

uMt−1

⎞⎟⎟⎟⎠+ . . .

+

⎛⎜⎜⎜⎝
α11q α12q · · · α1Mq

α21q α22q α2Mq

...
...

...
αM1q αM2q αMMq

⎞⎟⎟⎟⎠ ◦
⎛⎜⎜⎜⎝

u1t−q
u2t−q
...

uMt−q

⎞⎟⎟⎟⎠ (1a)

or compactly as

yt = ut +A1 ◦ ut−1 + . . .+Aq ◦ ut−q. (1b)

The integer-valued innovation sequence {ut} is assumed independent and iden-
tically distributed (iid) with E (ut) = λ =(λ1, . . . , λM )

0 and Cov(ut) = Ω.
Obviously, there is reason to expect the Ai matrices to become sparser as i
increases.
The binomial thinning operator distinguishes the VINMA model from the

VMA model. By employing the binomial thinning operator in (1a-b) we ac-
count for the integer-value property of count data. The operator can be written

A ◦ u =

⎛⎜⎝
PM

i=1 α1i ◦ ui
...PM

i=1 αMi ◦ ui

⎞⎟⎠ (2)

where αki ◦ ui =
Pui

j=1 zjki. The {zjki} is assumed to be an iid sequence of
0-1 random variables with Pr(zjki = 1) = αki = 1− Pr(zjki = 0) and the zjki
and ui are assumed to be independent. Since αki ∈ [0, 1], αki ◦ ui ∈ [0, ui].
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Some conditional and unconditional moment properties of αki ◦ ui and A ◦ u
are given in the Appendix.
For the covariance matrix Ω we assume

Ωij = Cov(uit, ujs) =

½
σij − λiλj , for t = s

0, for t 6= s

with σij = E(uitujt), i 6= j, and σij = σ2i = E(u2it), i = j. The off-diagonal
elements Ωij , i 6= j, can be positive or negative depending on the relative sizes
of σij versus λiλj .
Retaining the previous assumptions, the conditional (on the previous ob-

servations, Yt−1 = y1t−1, y1t−2, ..., y2t−1, y2t−2, ....) first and second order mo-
ments for the VINMA(q) model are, in analogy with Brännäs and Hall (2001)
and Quoreshi (2006a),

E(yt|Yt−1) = Et|t−1 = λ+

qX
i=1

Aiut−i (3a)

Γt,t−k|t−1 = E[(yt −Et|t−1)(yt−k −Et−k|t−k−1) | Yt−1] (3b)

=

½
Ω+

Pq
i=1Hit, k = 0

0, otherwise

where diag(Hit) = Biut−i with Bi an M ×M matrix with elements (Bi)jk =

αjki(1 − αjki). Since the conditional variance varies with ut−i there is con-
ditional heteroskedasticity. When M = 2 and matrices Ai are diagonal the
VINMA(q) collapses into the BINMA(q1,q2) model of Quoreshi (2006a).
The unconditional first and second order moments for VINMA(q) model

can be written

Eyt =

"
I+

qX
i=1

Ai

#
λ (4a)

Cov(yt,yt−k) =

⎧⎨⎩
Ω+

Pq
i=1AiΩA

0
i +

Pq
i=1Gi, for k = 0

AkΩ+
Pq

i=1Ak+iΩA
0
i, for k = 1, 2, . . . , q

0, for | k |> q

(4b)

with diag(Gi) = Biλ.
We may wish to include explanatory variables in the VINMA(q) model

setup. This is most easily done by introducing a time-varying λt (Brännäs,
1995)

λjt = exp(xjtβj) ≥ 0, j = 1, . . . ,M. (5)
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Previous prices, etc. are included in xjt. To obtain a more flexible conditional
variance specification in (3b) we may let σ2j become time dependent σ

2
jt. Al-

lowing σ2jt to depend on past values of σ
2
jt, ujt, σ

2
it and uit, for i 6= j, and

explanatory variables, using an exponential form, we may specify (cf. Nelson,
1991)

diag (Ωt) = exp

"
φ0 +

PX
i=1

Φidiag (Ωt−i) (6)

+

QX
i=1

Θidiag
¡eut−ieu0t−i¢+ RX

i=1

Ψix
0
t−i

#

where eut−i = ut−i − λt−i. The φ0 is an M vector with elements φj0, Φi, Θi

and Ψi are M ×M matrices.

3 Estimation

As we specify the model with first and second order moment conditions the
conditional least squares (CLS), the feasible generalized least squares (FGLS)
and the generalized method of moments (GMM) estimators are first hand can-
didates for estimation. Here, we only consider the CLS and FGLS estimators.
The CLS and FGLS have the residual

e1t = yt −E(yt|Yt−1) (7)

in common and both the CLS and FGLS estimators of ψ = (ψ01,ψ
0
2, . . . ,ψ

0
M )

0

with ψj containing the α-parameters of the jth equation minimize a criterion
function of the form

S =
TX

t=q+1

e01tcW−1
t e1t, (8)

where e1t = (e11t, e21t, . . . , eM1t)
0, with respect to the unknown parameters.

For CLS, cWt = I, while for FGLS cWt = bΓt,t−k|t−1, where bΓt,t−k|t−1 is a esti-
mate of the conditional covariance matrix in (3b). To calculate the sequences
{e1t} we employ e1t = ut − λt.
The conditional variance and the covariance prediction errors

ej2t = e2j1t − σ2jt −
qX

i=1

MX
k=1

αjki(1− αjki)ukt−i (9)

ej3t = ei1tej1t −Ωij , for i 6= j (10)



VINMA and Number of Stock Transactions 5

are used for FGLS estimation. Sj2 =
PT

t=s e
2
j2t and Sj3 =

PT
t=s e

2
j3t, where

s = max(q, P,Q, R)+1, are minimized with respect to the parameters of the
function σ2jt and σij and with the CLS estimates for the jth equation bψj andbujt kept fixed. For time invariant Ω a simple and obvious moment estimator

bΩ = (T − s)
−1

TX
t=s

"
(e01te1t)−

qX
i=1

Hit

#

follows from (3b). The covariance matrix estimators for CLS and FGLS are

Cov(bψCLS) = (
TX
t=s

∂e1t
∂ψ0

∂e1t
∂ψ

)−1

Cov(bψFGLS) = (
TX
t=s

∂e1t
∂ψ0

eΓ−1t,t−k|t−1 ∂e1t∂ψ
)−1.

The eΓt,t−k|t−1 is the covariance matrix for the residual series from FGLS esti-
mation.

4 Empirical Results

Tick-by-tick data for Ericsson B and AstraZeneca are aggregated over five
minute intervals of time. The covered period is November 5-December 12,
2002. Since our intention is to capture ordinary transactions we have deleted
trading before 0935 (trading opens at 0930) and after 1714 (order book closes at
1720). There are altogether 2392 observations for each stock series. Both CLS
and FGLS estimators are employed for the VINMA model and the AIC crite-
rion is used to find lag lengths for the VINMA(q) model. The FGLS estimator
turns out to be the better one in terms of eliminating serial correlations. The
parameters for Ericsson B (α11i) and AstraZeneca (α22i) estimated by FGLS
are presented in Figure 1 (left panel). All estimates are positive and significant
at the 5 percent level. The parameters to capture spillover effects from As-
traZeneca to Ericsson B (α12i) and from Ericsson B to AstraZeneca (α21i) are
presented in Figure 1 (right panel). About 19 percent of the estimated mean
transactions for AstraZeneca is due to spillover effects while about 2 percent of
the estimated mean transactions for Ericsson B is due to spillover.1 The α21i
are all significant until lag 16 except for lags 6−8 and 13, while the α12i are all

1To calculate the percent of mean transactions for yj due to spillover effect from yk we
employ 100 · ( q

i=0 αjkiukt−i/E(yjt|Yt−1)).
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Figure 1: The circles and the triangles are the moving average parameters
for Ericsson B (bλ1 = 13.16) and AstraZeneca (bλ2 = 1.97) (left figure). The
solid circles capture the impact of AstraZeneca on Ericsson B while the squares
capture the impact of Ericsson B on AstraZeneca (right figure).

significant until lag 9 except for lags 1, 3− 5 and 7. This implies that Ericsson
B influences AstraZeneca for a longer period of time than is the case in the
other direction.
The estimation results for the VINMA and BINMA (see Quoreshi, 2006a)

models are summarized in Table 1. For FGLS, the VINMA model is marginally
better than the BINMA model in terms of goodness of fit. For the VINMA
model, the adjusted R2 for Ericsson B increases from the BINMA model by 1.1
percent while it increases by 4.9 percent for AstraZeneca. It is found that news
related to AstraZeneca Granger-causes Ericsson B and vice versa. The condi-
tional correlations between the stock series at lag zero estimated with VINMA
and BINMA models are 0.16 are 0.15, respectively. This implies that the in-
tensity of trading for both stocks moves in the same direction, i.e. increases
or decreases, due to macroeconomic news and news related to a specific stock.
The corresponding estimated unconditional correlation for the VINMA model
is 0.21 while the correlation between the two stock series in the sample is 0.28.
For FGLS (CLS), the α11i and α22i estimates give a mean reaction time

(RTm) of 26.07 (26.21) and 23.23 (17.23) minutes, respectively.2 For FGLS
(CLS), the α11i and α22i estimates give a median reaction (RTme) time of 20
(20) and 15 (10), respectively. Hence, for the measurement of reaction time,
the choice of mean or median reaction time matters.

2As measures of reaction times to macroeconomic news/rumors in the {ujt} sequence
on yjt we use the mean lag

qj
i=0 iαjji/w, where w =

qj
i=0 αjji and where αjj0 = 1.

Alternatively, we use the median lag, which is the smallest k such that k
i=0 αjji/w ≥ 0.5.
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Table 1: Results for VINMA and BINMA models for Ericsson B (Stock 1) and
AstraZeneca (Stock 2).

VINMA BINMA
CLS FGLS FGLS

Stock 1 Stock 2 Stock 1 Stock 2 Stock 1 Stock 2

R
2

0.505 0.209 0.504 0.231 0.498 0.221

RTm 26.21 17.12 26.07 23.23 25.91 24.64

RTme 20.00 10.00 20.00 15.00 20.00 15.00

LB30 31.58 70.26 32.87 17.96 34.67 18.41bρ0|t−1 0.159 0.160 0.150

5 Concluding Remarks

This study introduces a vector integer-valued moving average (VINMA) model.
The conditional and unconditional first and second order moments are ob-
tained. The VINMA model allows for both positive and negative correlations
between the counts. The model is capable of capturing the covariance between
and within intra-day time series of transaction frequency data due to macroeco-
nomic news and news related to a specific stock. In its empirical application, we
found that the spillover effect from Ericsson B to AstraZeneca is larger than
that from AstraZeneca to Ericsson B. The FGLS estimator performs better
than the CLS estimator in terms of eliminating serial correlations.
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Appendix

Conditionally on the integer-valued ui, αki ◦ ui is binomially distributed with
E(αki ◦ui | ui) = αkiui, V (αki ◦ui | ui) = αki(1−αki)ui and E[(αki ◦ ui)(αkj◦
uj)| ui, uj ]= αkiαkjuiuj , for i 6= j. Unconditionally it holds that E(αki ◦ui) =
αkiλi, V (αki ◦ ui) = α2kiσ

2
i
+ αki(1 − αki)λi and E [(αki ◦ ui) (αkj ◦ uj)] =

αkiαkjE (uiuj), for i 6= j, where E(ui) = λi and V (ui) = σ2i .
Assuming independence between and within the thinning operations, con-

ditionally on M × 1 integer-valued vector u, A ◦ u has

E (A ◦ u | u) = Au

E [(Ai ◦ ut−i)(Aj ◦ ut−j)0 | ut−i,ut−j ] =

½
Aiut−iu0t−iAi

0 +Hit, for i = j

Aiut−iu0t−jAj
0, for i 6= j

where the A is a M ×M matrix with elements αki ∈ [0, 1] and diag(Hit) =

But−i. The B is an M ×M matrix with elements αki(1 − αki). The corre-
sponding unconditional first and second order moments are

E (A ◦ u) = AE (u)= Aλ

E [(Ai ◦ ut−i)(Aj ◦ ut−j)0] =

½
AiE

¡
ut−iu0t−i

¢
Ai

0 +G, for i = j

AiE
¡
ut−iu0t−j

¢
Aj

0, for i 6= j

where diag(G) = Bλ.
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