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Abstract

In this note, we estimate time series of shadow prices for Swedish emissions of CO3, SOa,
and VOC for the period 1918 - 1994. The shadow prices are in the second step related to
income to explain the environmental Kuznets curves previously found for Swedish data on
the three emissions. A Shephard distance function approach is used to estimate a structural
model of the industry’s production process in order to calculate the opportunity costs of a
reduction in the emissions. We conclude that the times series of the shadow prices obtained

using this approach do not show support for EKCs for Swedish industry.
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1 Introduction

In this note, a Shephard distance function approach is used to estimate time series of shadow
prices for emissions of carbon dioxide (COg), sulphur dioxide (SO3), and volatile organic com-
pounds (VOC) for the Swedish industrial sector. In a second step, the shadow prices are regressed
on the per capita GDP to explain the Swedish pattern of emissions: first increasing and then,
after a turning point, decreasing as the GDP per capita increases. This relationship is generally
known as the environmental Kuznets curve (EKC)!, and observing the shadow prices enables
the EKC pattern of the emissions to be explained via the industries’ abatement costs.

One view put forward by Meadows et al. (1972) among others, is that economic growth re-
quires greater use of energy and material and will, thus, generate larger quantities of emissions
and waste as by-products. A substantial extraction of natural resources and an increased concen-
tration of pollutants will then lead to a degradation of the environment. Another view originates
from The World Bank’s World Development Report 1992 (IBRD, 1992). This argues that the
traditional way of relating growth to environmental damage is based on assumptions that are
too static with regard to technology, consumer preferences and environmental investments. It is
suggested, instead, that growth may improve environmental quality via technological progress
and a rising demand for a clean environment. If the second view is correct, then one would
expect emissions to grow when a country with low economic activity increases its production.
As the level of economic activity increases, there will eventually be a turning point after which
pollution decreases.

Theoretical studies (Selden and Song, 1995; Stokey, 1998; among others) use structural
models to explain how changes in technology and preferences are related to changes in the
environment, but, as noted by Panayotou (2003), these theoretical models have not yet been
empirically tested. The empirical literature originates from the study of Grossman and Kreuger
(1991) in which they estimate EKCs for SO2, dark matter (fine smoke) and suspended particles.
A common approach for many of these studies (see Stern, 1998, for an overview) is to estimate
the relationship between an environmental index and per capita income, controlling for various
other factors such as trade, energy prices, public R&D expenditures and measures of democracy.
For Sweden, Brannlund and Kristrom (1998) find support for an EKC for SO2 using data for
the period 1900-1993, and Kristrom and Lundgren (2005) find indications of an EKC for COq
using data for the period 1900-1999. Both studies plot the emissions against GDP per capita
and use data on a national level.

The method used in this study originates from Fire et al. (1993), who develop a distance

!The EKC is named after Kuznets (1955) who originally proposed a similar relationship between inequality in

the distribution of income and economic growth.



function approach to obtain shadow prices for undesirables in the absence of market prices. By
using this approach, this note is a first step towards narrowing the gap between the underlying
theory and the empirical assessment of the EKC.

The rest of the note is organized as follows; in the next section we present the theory
underlying our approach and derive the theoretical shadow prices. The empirical model is
specified in Section 3 and the data and estimation procedure are discussed in Section 4. In

Section 5, we present the results and finally, some conclusions are drawn in Section 6.

2 The Model

The theoretical framework is analogous to Briannlund and Kristrom (1998) and Kristrom and
Lundgren (2005). Here, we estimate the shadow prices as the slope of the equilibrium condition
that the marginal willingness-to-pay (MWTP) for environmental quality should be equal to its
supply cost in terms of reduced production of the desirable good. The EKC is then interpreted
as the expansion path of this equilibrium over different income levels.

As we only have data on the production side of the economy, we simplify the problem to a
"partial analysis”, in the sense that we disregard the consumer’s utility function and estimate
only the production possibilities for society. The shadow price is then calculated as the marginal
rate of transformation between the good product and pollution.

Pollution is viewed as a by-product of the production of the desirable good and it is, there-
fore, natural to model the desirable and undesirable goods as joint-products of a multi-output
production technology. We assume a vector of N inputs x = (z1,...,zx) used in the produc-
tion of a vector of M outputs y = (y1,....,yar), where some can be considered undesirable or
bad outputs. The prices of the undesirables are expected to be non-positive, thus we define
P = (py, P,)’ where p, > 0, for desirable outputs and p; < 0 for undesirable outputs.

The origins of the distance function approach to modelling outputs of desirables and unde-
sirables can be found in Fére et al. (1993) who use the distance function as defined by Shephard
(1970). The function is defined to measure the ratio of the observed output bundle to the

maximum potential output bundle conditional on the input bundle
Do(x,y) = min{6 : (x,y/0) € T},

where the notation o separates it from an input distance function, and the 6 is the minimum
multiplier that projects the observed output bundle along a ray from the origin to the greatest
potential output bundle, given the input bundle. The technology is given by T' = {(x,y) : x
can produce y}. We assume weak disposability, which basically means that the reduction of a

bad output comes at the cost of a proportional reduction of the good output. The assumption



of weak disposability is formally written; (x,y) € T and 6 € [0,1] = (x,0y) € T. For the

representative firm, we may then write the following maximization problem:
R(x,p) =max p'y s.t. Dy(x,y) <1.
y

The distance function will take a value that is less than or equal to one if the output vector
is an element of the feasible production set. In the following, we assume that all observed
output bundles are efficient, i.e., lie on the production frontier, and the distance function will
therefore take value one. The associated Lagrangean can therefore be written as £(y,\) =
Py + M1 — Dy(%,y)), and the first order necessary condition, with respect to output, becomes
p = AV D,(x,y). Here we are interested in the shadow price of a bad output, denoted py, in
terms of the price of a good output, py:

Py _ ODo(X,¥)/Oys
Py 0D,(x, y)/ayg7

where g = value added, and b = CO2, SO2, and VOC, respectively. Computing these prices for

(1)

each year gives a series that makes it possible to: first, study how the prices develop over the
sample period and, second, regress the prices on income to see how they change as the economy

grows larger.

3 Empirical Specification

To calculate the empirical shadow prices of eq. (1), we must first estimate the parameters of the
distance function. Accordingly we specify the following estimating equation (suppressing time
subscripts):

1 = Do(xk,yr) - exp (k) (2)

where x is a vector of IV inputs and y is a vector of M outputs in the industrial sector k = 1, ..., K.
As we want to allow the technology parameters to change over time, we do not wish to estimate
the equation for the full sample at the same time. Instead, we estimate the equation for a
series of sub-samples, or windows, of length T. One shadow price per undesirable and window
is calculated using the window means of the variables in the equation. Ascribing the price to
a year within the window, and repeating this procedure for all windows, gives a series of ”year
specific” shadow price observations.

However, before estimation is possible, we must pay attention to two problems with the
specification in eq. (2). First, we assume that the firms are efficient, i.e. they operate on the
production possibility frontier. The left hand side of the equation will, therefore, take the value

one as it represents the function without an error term. The right hand side of the equation is the



observed value; D,(Xg,yx) and an error term, exp (ex). Often in frontier estimation, one seeks
the estimates of firm efficiency and, when this is the case, the error term is modelled to represent
inefficiency. In this note, the focus lies on the slope of the production possibility frontier, and the
deviation from the frontier is viewed as due to variables that are unknown to the researcher, and
that influence the production process. The error term is assumed to be normally distributed

2. Second, we wish to ensure that the assumption of weak

with a zero mean and variance o
disposability is fulfilled. It turns out that by solving the second problem, we also solve the first.
To ensure weak disposability, we impose the restriction that the distance function be linearly
homogeneous of degree one in all outputs. Imposing this restriction is equivalent to normalizing
the left hand side and the output vector on the right hand side by one of the outputs (Lovell et

al., 1994). Choosing the M:th output, we can define ¢, = 1/ ypsx, and rewrite eq. (2) as

b = Do(Xk, 9Yk) - exp (k) 5 (3)

where yp includes M — 1 output ratios. Unfortunately, this normalization introduces a new
problem in the estimation. Since one variable now appears on both sides of the equation, the
estimated parameters will suffer from simultaneity bias. The severity of this problem will depend
on the variance of yjs in relation to the other variables.

When estimating eq. (3), a translog specification is chosen as a flexible approximation to

the true underlying distance function:

WE
M=

N M—1
1
Ing, = ao+ Zlﬁn Inz,, + Zl Qo 10 O Yk + 3 2 By (I i) (In 2, (4)
| M1 M1 N M-1
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The set of inputs with NV = 2 has x1; denoting the input of labor, and x9, is the input of capital.
The set of outputs with M = 4 has the desirable output per capita production (value-added)
denoted by y1%, and the undesirable outputs COz, VOC, and SO2 denoted by wysr, y3r and
Yak, respectively. The chosen normalizing variable is SOy which implies that the left hand side
variable becomes 1/SOq, thus resolving the problem of no variation in the variable. Finally,

symmetry restrictions are imposed, i.e.

/
Omm/! = O[m/m’ m = 1,...,M, m = 1,...,M

,Bnn/ = ,Bn/n, n = 1, ...,N, TLI = 1, ,N .

Once eq. (4) is estimated and the empirical shadow prices are calculated, we estimate the
possible relationship between the prices and the per capita GDP with a simple polynomial
regression:

i = O0i + 6152 + 02i (2 — 2)* + 635 (2 — %)% +my (5)
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Table 1: Descriptive Statistics. The full sample for the time period 1913-1999: 87 years and 8

sectors yields 696 observations.

Variable Unit Mean St. Dev. Minimum  Maximum
Labor K. hours 17370 20683 2156 100744
Capital Stock M. SEK 2368 4376 29 26469
Value-Added M. SEK 13770 22397 191 135655
CO2 K. tons 3197 4436 2 27252
SO2 10 tons 1603 2533 3 12239
VOC K. tons 1219 1849 3 9243
GDP/capita SEK 86036 46499 27195 166266

Notes: The sample size for GDP equals the number of calculated shad-
ow prices: 77 observations. The Capital Stock, Value-Added and GDP

are expressed at the 1990 price level.

where i = CO9, SOy, VOC, and the z is the window mean of the GDP per capita, obtained
for the same windows as used in the calculation of the shadow prices. Ascribing the window
mean to a year within the window, and repeating this procedure for all windows gives a series
of smoothed per capita GDP. The t denotes time for the constructed series of the shadow prices
and the smoothed per capita GDP, and for this estimation, the sample size is defined by the
length of the obtained shadow price series. To reduce multicollinearity, the deviation from the
mean of the smoothed GDP series, denoted Z, is used for the quadratic and cubic terms. The

error term 7 is assumed to have a zero mean and constant variance.

4 Data and Estimation

We use historical data for Swedish industry, divided into eight industrial sectors (Lindmark,
2003)2. The balanced panel of annual data series covers the period 1913 - 1999. Labor input is
expressed in working hours, and the capital stock, the value-added and the per capita GDP are
all expressed in SEK at the 1990 year’s price level. Further, the emissions are all expressed in
metric tons. Descriptive statistics of the data set is displayed in Table 1.

The estimation of the model is structured as follows; we choose the window so that is consists
of eleven years, or 88 panel observations, and the calculated shadow prices are attributed to the

sixth year (the center) in each period. The first window ranges from 1913 to 1923 and we let

>The industries are: 1) Mining and metal, 2) Stone, clay and glass, 3) Wood products, 4) Paper and printing,
5) Food processing, 6) Textile and clothing, 7) Leather and rubber, and 8) Chemicals.



the window shift one year for every estimation so that the final window ranges from 1989 to
1999. In the estimation for each sub-sample, we apply a number of specification tests and model
diagnostics to ensure the econometric reliability of the estimation results®.

Sector specific fixed effects are assumed to be present, representing, e.g., differences in tech-
nology between the sectors. These are modelled by adding seven sector dummies to the restricted
equation. Results from an F-test of the fixed effect regression versus a restricted pooled regres-
sion, support the former specification. Dummy variables are also used for the period 1914 - 1919
and 1939 - 1945 to account for the effects that World Wars I and II have on the data. We also
use a dummy variable for the years 1930 - 1936 to account for the unusually large emissions
of SO2 made by the major Swedish metal melting plant, Rénnskér, during its initial years of
operation.

The equation is estimated using OLS. Before calculating the shadow prices, we re-specify
the estimated equation as eq. (2) and proceed by calculating the ratio of the derivatives as in
eq. (1). The confidence interval is obtained using the delta-method.

In the next step, each price is regressed on a smoothed (the window mean) per capita GDP
as in eq. (5). The series of shadow prices calculated range from 1918-1994, giving a sample
size of 77 observations. The equation is first estimated using OLS and a Durbin-Watson test
is applied, rejecting the null of no first order serial correlation. The partial autocorrelation
function indicates no higher order serial correlation for the CO2 and the SO2 equations, but the
lag five autocorrelation is significant for the VOC equation. When an LM-test is used for testing
against heteroskedasticity we can reject the null of homoskedasticity for all three equations.
The equation is, therefore, re-estimated using the Newey-West estimator, including a lag one

autocorrelation for the first two equations and a lag five autocorrelation for the last equation.

5 Results

The shadow prices and their confidence intervals for the 77 sub-samples are shown in Figures
la-c. All three price series seem to fluctuate around zero throughout most of the period. In
general, they are not significantly different from zero, and when there are significantly positive
or negative values, this only occurs for a few short periods. There is no sign of the prices turning
negative for the latter years of the period.

In Figure la, we see the sequence of shadow prices for CO2 evaluated at corresponding

window data means. Prices are significantly negative only for one year in the early 1950s.

3The output file for the test results is large and not well suited for presentation. It is available from the author

on request.
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Figure 1: The Figures a to ¢ show the shadow prices for COz, SOy and VOC, respectively,
plotted against time. The dotted lines mark the endpoints of individual 95 percent confidence

intervals.

Prices are significantly positive for a number of years in the late 1930s and early 1940s and for
a longer period stretching from 1970 to the middle of the 1980s. Overall, the pattern does not
indicate a particular sign or any marked deviation from zero.

In Figure 1b, the shadow prices for SOy are evaluated at the data mean for each window.
From the figure, we can see that the price is significantly negative from the late 1930s to the
beginning of the 1940s, from the late 1950s to the early 1960s and for a few years in the early
1970s. It is significantly positive for one year in the early 1950s. The price series has a positive
mean during the last ten years of the sample. However, the observations are accompanied by
wider confidence intervals, accordingly they are not significantly positive except for a short
period in the late 1980s. The overall impression is that, even though prices sometimes deviate
from zero, they still fluctuate around zero and there is no indication of prices turning negative
during the latter period of the sample.

Turning to the final shadow price, the series for VOC is plotted in Figure 1c. The price shows
significantly negative values for a few years in the early 1970s. Significantly positive values are
shown for a short period in the mid 1930s and for one year in the late 1980s. From the figure,

one can see that the fluctuations tend to increase in magnitude after 1970, and that these are in



turn accompanied by a wider confidence interval. Once again, the total impression is that the
price series fluctuates around zero and that there is no indication of the price turning negative
in the latter period.

The reliability of these results is tested by means of the following diagnostics of the underlying
model: the condition number of the data matrix is calculated and there is a clear indication of
multicollinearity. We examine the severeness of the multicollinearity by comparing the model
with a Cobb-Douglas specification, which shows less problems with multicollinearity, and may
then conclude that the regression results seem robust with respect to the choice between the
two models. The parameter estimates from the Cobb-Douglas are, of course, different but the
evolutions of the shadow prices do not give rise to interpretations other than those given by the
translog specification. Durbin-Watson tests of no first order serial correlation in the residuals
give inconclusive results, although the reliability of the test is lessened by the short time series for
each sector in the subsamples. The same reasoning applies when we test for homoskedasticity,
however, one can argue that heteroskedasticity is likely to exist between the sectors in the
Swedish industry. When applying an LM-test, the null of homoskedasticity cannot be rejected,
possibly due to the normalization of the output variables.

Furthermore, the robustness of these results is examined with respect to the size of the
window. To identify the parameters, we need at least four years of observations. The efficiency
of the parameter estimates increases as we include more years in the window, but it comes at
the cost of losing shadow price observations at the end of the full sample. The upper bound is
thus given by the number of shadow price observations we are willing to sacrifice. The model
is re-estimated with less, and with more, than eleven years in the window. The results seem
robust with respect to the number of years included. However, when six years or less are used,
problems arise with spikes in the confidence interval, possibly due to too small variation in the
dependent variable for the number of observations in the short time period.

Next, we explore the relationship between each shadow price and the GDP per capita. The
results from the regressions are reported in Table 2. In Figure 2, we see the three shadow
prices plotted against the per capita GDP, stretching from 27000-167000 SEK. Generally, the
production is increasing over time so low per capita GDP levels appear early, and higher levels
appear later in the time period. The point estimates of the COy price show a tendency to
be negative for low production levels and to increase as production increases, with the highest
estimates at production levels between 85000-95000 SEK, after which the price decreases. For
the CO4 polynomial approximation, the level and the quadratic terms are significant at the five

percent level. The level term is positive, the quadratic term is negative, and the predicted values



(solid circles) show a turning point* at approximately 110000 SEK.

The pattern for the SOs price is almost the opposite. A positive price at low production
levels becomes negative as production increases, with the lowest estimates at production levels
of between 85000-90000 SEK. As production increases even more, the estimates become positive
again. All terms, except for the constant, are significant. The level term is negative and the
quadratic and cubic terms are both positive, and the predicted values show a turning point at
105000 SEK. Turning to the final shadow price, the estimates for VOC show a more spread
pattern with negative and positive estimates throughout all production levels. No term is sig-
nificant in this regression and the R? is as low as 0.066. Although close to zero for some periods,
the predicted values never become negative. The price is first increasing as production increases,
then decreasing and then increasing again.

Some of the calculated shadow prices are significantly positive, which is not expected from
theory. Disaggregating the model to generate sector specific shadow prices, makes it possible
to study whether the positive prices may be overrepresented in one or a few sectors. When
doing so, however, there is no clear indication that such prices would be prevailent in a specific
sector. Nevertheless, spikes of extreme variance do arise in some sectors®, and these spikes are
also transmitted when aggregating these prices to manufacturing industry level (i.e., taking the
mean of the sector specific prices for each year). Further, when regressing the mean of the sector
specific prices on income, very few parameters are significant, making a formal presentation of
the results redundant.

Accordingly, we return once more to the aggregate prices from the "main model” and examine
how sensitive the estimates for the shown price equations are to the positive prices. First, the
equations are re-estimated with the significantly positive prices excluded. The samples are
reduced by 20 observations for the CO9 equation and by 3 observations for the SO2 and the
VOC equation, respectively. The first term in the COs equation, and the level and the cubic
terms in the SO2 equation become insignificant, but there are no major changes in the predicted
values from these estimations. Next, the equations are estimated as Tobit models. We set the
threshold to zero, which implies that all positive prices are set to zero, not only those that are
significantly so. The fraction of negative prices is 0.3 for the CO2 equation, 0.53 and 0.19 for
the SO5 and VOC equations, respectively. As in the former estimation, the level term for the
SO2 equation, and the level and the cubic terms in the SO equation become insignificant, but

also, all the parameters except for the quadratic term become significant for the VOC equation.

4Note that these turning points concern the shadow prices and not the actual emissions, as are usually referred

to.
"For the shadow prices of all three emissions, spikes arise in the sectors: 1) mining, basic metal industries, and

6) textile and wearing apparel. For CO3 , spikes also appear in sector 7) leather and rubber.
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Figure 2: The point estimate of the shadow prices for COs, SOy and VOC, plotted against
GDP (in 1000 SEK) per capita. The solid circles mark the predicted values from the polynomial

approximations in Table 2.

There are no major changes in the predicted values from the Tobit estimation, and the overall
impression is still that the results from the first estimation are fairly robust with regard to the
exclusion or censoring of positive prices.b

In the end, when interpreting these regression results, one should keep in mind that most of
the observed prices are not significantly different from zero so these price fluctuations are still

quite small.

6 Concluding Comments

In this note we have used a Shephard distance function to obtain the shadow prices for Swedish

emissions of carbon dioxide, sulphur dioxide and volatile organic compounds. In a second step,

%The predictions from the latter two estimations are plotted and compared with the predictions from the
first, and there does not seem to be much difference between the predictions from the three estimations. Only
the predictions from the first estimation are reported. We also regress the prices on the non-smoothed GDP
per capita and the significance level of the parameter estimates are then generally lessened, leaving only the

significance levels of the CO2 regression fairly unchanged.
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Table 2: Parameter estimates for the price equations.

COg price SO2 price VOC price
Variable Coeff  s.e. Coeff  s.e. Coeff  s.e.
z 0.284 0.085° -0.734 0.307° -0.186 0.352
(z—%)2 0.054 0.018°  0.112 0.034"  0.005 0.013
(z—2)* -0.003 0.003  0.025 0.011°  0.008 0.008
Constant -0.357 0.869 3.701 2.447 1.944 2.533
R34y 0.395 0.506 0.066
LM 21.373° 39.068 29.037"°
DW 0.596 " 0.656 " 0.563"
AR 1 1 5

Notes: The z is the GDP per capita, scaled to 10000 SEK for this
estimation. The * indicates significance at the 5 percent level. LM
is the Lagrange-multiplier test against heteroskedasticity. DW is
the Durbin-Watson test against serial corellation of lag one and

the AR denotes the number of lags finally used in the regression.

these prices have been used to evaluate the hypothesis of an environmental Kuznets curve. An
advantage of observing shadow prices rather than observing the actual emission levels is that,
as the shadow prices reflect the firm’s abatement costs for reducing emissions, they may be used
to explain the evolution path of the actual emissions. The more the firm reduces its emissions,
the greater the abatement costs are and, hence, the shadow prices become ”more negative”. In
the results, all three price series seem to fluctuate around zero throughout most of the period.
They show significantly negative or positive values for some periods, but in general they do
not deviate significantly from zero. There is no sign of the prices steadily turning negative for
higher production/consumption levels. However, the results from the COg regression do reveal
a pattern that can be interpreted as an indication of an EKC for the emissions, although, since
the price is generally not significantly different from zero, we chose to interpret these indications
cautiously.

Altogether, we do not, therefore, find support in this model for the EKC patterns found
in the previous studies made by Brinnlund and Kristrom (1998) and Kristrom and Lundgren
(2005). Both studies use data at a national level and they find indications of EKCs for Swedish
emissions of COg and SO2 with turning points in the early 1970s, which in our data is equivalent
to a per capita GDP of approximately 120000 SEK.

The reason our observations do not predict an EKC pattern may lie in the estimation tech-
nique, or rather, in how the distance function is specified. The specification of the Shephard

distance function allows for the ray to aim at the production frontier in a way that generates
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positive shadow prices. The advantage of using this specification is that it does not impose a re-
striction that the observed shadow prices must be non-positive as is suggested by the theory. An
alternative specification that can be defined to assure negative shadow prices is the directional
distance function (see, e.g., Fire and Grosskopf, 2004). With this approach, one can arbitrarily
specify in what direction the output vector is scaled so as to reach an economically feasible part
of the production function, ensuring non-positive shadow prices. The drawback is, of course,
that restrictions are imposed on the estimation and the question is raised concerning how to
choose the direction of the distance function. We cannot a priori say that the results from using
a directional distance function would lead us to come to conclusions other than those we reach

in this note.
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