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Abstract

The paper considers conditional duration models in which durations are in continuous
time but measured in grouped or discretized form. This feature of recorded durations
in combination with a frequently traded stock is expected to negatively influence the
performance of conventional estimators. A few estimators that account for the dis-
creteness are discussed and compared in a Monte Carlo experiment. An EM-algorithm
accounting for the discrete data performs better than those which do not. Empirical
results are reported for trading durations in Ericsson B at Stockholmsboérsen for a
three-week period of July 2002. The incorporation of level variables for past trading
is rejected in favour of change variables. This enables an interpretation in terms of
news effects. No evidence of asymmetric responses to news about prices and spreads

is found.
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1. INTRODUCTION

This paper considers the discrete nature of empirical duration data in frequently traded
stocks. The output from a trading system records transactions to prevailing second and the
resulting durations then contain a large fraction of zeros and very short durations. We take
the continuous underlying duration density to be discretized and study the consequences
for the econometric treatment of such data. A second objective of the paper is to give
empirical evidence on the reaction to news in a specific stock.

Engle and Russell (1998) suggest conditional duration models for high frequency or
intra-day time series data and emphasized the appealing properties of the quasi-maximum
likelihood (QML) estimator based on the exponential duration model. There is an increas-
ing amount of empirical research building on this QML estimator (e.g., Bauwens and Giot,
2001). Among the questions of interest in this field is the reaction to news as reflected,
e.g., by indicators reflecting recent transactions (e.g., Fasley and O’Hara, 1992; Engle and
Russell, 1998).

When the data are available in only a discretized form the QML estimator looses some
of its appeal. In essence, the consistency property requires a correct conditional mean
specification and when data is discretized this is much harder to achieve as the conditional
mean will then depend on the true underlying density. Kulldorff (1961, ch. 2) shows in a
time invariant case the inconsistency of the maximum likelihood (ML) estimator arising
from, e.g., using mid-interval values to represent the interval when data are discretized
or grouped. He also demonstrates that discretization and the use of mid-interval values
have more serious effects on the performance of ML estimators when the sample records
durations to belonging to only a few and wide groups or intervals for continuous durations.
For frequently traded stocks the groups are relatively few but the width is generally quite
small. We may then expect the inconsistency to remain, but the actual performance of
the ML or QML estimators may remain relatively advantageous. The inconsistency will
remain when the model contains explanatory variables. In addition, if the true duration
is viewed as continuous but only discrete time observations are available, any specification
containing lagged durations will then be contaminated by a measurement error in a way
to be made clear below.

In this paper we consider estimators that to some extent account for the outlined fea-

tures of the data. Grouped data ML estimators and EM-algorithm versions are among
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Figure 1: Examples of potential transaction times 7; and the registered duration variable

dy with the intervals of the underlying continuous duration variable D;.

the studied estimators. We conduct a small Monte Carlo study focusing on the conse-
quences of the various specification choices and the chosen estimators. Empirical results
for a three-week period of transaction durations in Ericsson B at the order driven Stock-
holmsborsen stock exchange in Stockholm are also to be reported. Of particular interest,
beyond the focus on estimators, is here the reaction to news and whether the response to
positive and negative news are different. We will use past price, spread and volume as
indicators of new information to the market.

In Section 2 we discuss the model and discuss the ML, and EM-algorithm estimators
for discretized duration data. Section 3 reports the results from a set of Monte Carlo
experiments conducted to study the consequences of the alternative ways of handling the

discretized data. Section 4 reports the empirical results and the final section concludes.



2. MODEL AND ESTIMATORS

Let the tth continuous duration be denoted by D;. The duration arises as a difference
between two real transaction times, 7, indexed by k and k — 1, i.e. Dy = T — Tp_1-
When transactions are recorded at a second-level scale, the observed duration measure
dy = [Tk] — [Tk—1], where [] signifies integer-value, is in seconds and hence integer-valued.
For a frequently traded stock the durations are on average short and then d; will take on
one value from a set {0,1,2, ..., M}, where max{M;}]_, is a relatively small number and
T is the length of the time series sequence of consecutive durations.

Figure 1 illustrates how the transaction times, 7, the continuous durations, D;, and
the discretized durations, d¢, are related. Note that, except for di = 0, the di-values
represent mid-interval values. For d; = 0 the mid-interval value is 0.5.

Given an assumption about the continuous and conditional distribution of D; and
given the information set A;—1 = {D1, Da, ... ,Dy_1} it is straightforward to obtain the

probability for d; equal to some integer k given A;_1, as

Pr(d; =0|A¢—1) = Pr(D; € (0,1]|As—1)
= Pr(Dy <1]A41)
= a4n

Pr(d; = k|Ai—1) = Pr(Die (k—1,k+1]|Ai1) (1)
= Pr(Dy <k+1]A—1) — Pr(Dy <k —1|A41)

= Qtk+1 — Qtk—1s k>1,

with g0 = Pr(Dy < 0]A4—1) = 0.

In the sequel of this and the next section we only consider the conditional exponential
duration model, but any other reasonable duration distribution could have been considered
instead. By focusing on the exponential model the technical aspects are kept simpler
than for most other models, and the main ideas remain unaltered. For the exponential
conditional duration model with conditional mean E(D¢|A;—1) = 6; > 0 and conditional

variance V(Dy|Ay—1) = 0? we get explicit expressions for ¢ as

Pr(d; = 0|A;1) = g =1 — e /0 (2)

Pr(dy = k|Ap_1) = e”F=D/00 _ o=t 1)/0 . — 1 9 . M,



Since we can write D; = 04&;, with &; exponentially distributed with parameter one,

we obtain the conditional expectation of D; given d; = k as

1
E(Di|d; =0,Ai1) = 0 {1 T 0yl 1)]

k—1 k+1
E(Dt‘dt = k‘,At_l) = QtE St‘é‘t S , (3)
0, 0;
ek —1) — e 0 (k4 1)

= O+ o1/0r _ o1/ ’

for k > 1.

It may be shown that E(Dy|d; = k, A1) < k for k > 1 and that E(Dy|d; = 0,A-1) < %,
i.e. both conditional expectations can be expected to be smaller than their corresponding
mid-interval values. Equality arises only when 0; — oo.

In the conventional continuous duration framework advanced by Engle and Russell

(1998) the 6, function is of the type:

0: = aotarDia+...+agDiq+ B10t—1+ ... By0t—p +xi70
= Y, (4)

where x; is a vector of predetermined variables containing, e.g., past prices. Setting

& = Dy — 0, in (4) enables us to rewrite the model on the alternative form

Dy = ap+ (a1 +061)Di-1+ ... (g +By)Di—q+ Byy1Di—g-1+ ...+ B,Dt—p (5)

+€t - ﬂlft—l e ﬁpft—p + Xy, for p=q.

This is an ARMAX model in the continuous exponential duration variable. Obviously,

other specifications are also feasible (e.g., Bauwens and Giot, 2001, ch. 3).

2.1 FEstimators

We first consider estimation that accounts for the discreteness in the conditional variable d;
to be explained. Later we extend the estimation setup by also considering the discreteness
in the lagged durations that serve as explanatory variables in the 6; function.

The log-likelihood function for the discrete conditional variable of (2)-(4) takes the
form

T
InL = Zln(e—nt(yt—l)/% — (w0, (6)

t=r



where r = max(p,q) + 1 and n, = 0, for y» = 0, and n, = 1, for y; > 1. The associated
score vector can be expressed

dln L 7 My(ye — 1)e D@D (g, 4 1)t )(my) !
oy Z (Zt’l,b)2 e~ (ye—1)(ze) ™! — o—(ye+1)(zep) "

t=r

Obviously, other duration densities such as Weibull or log-logistic could also have been
applied. In the absence of strong a priori arguments for a particular model one avenue
would be to specify an even wider class of densities such as the generalized gamma. The
Appendix gives expressions for the Weibull and Burr models, which also will be used in

the empirical study below.

For (4)-(5) lagged continuous D;_;,i = 1,... , g, variables are assumed observed. Obvi-
ously, if durations are measured discretely D;_; are not observed but the d;_;,i =1,... ,q,
are. A consequence of using the discrete d;_;,7 = 1,... ,q, is that measurement errors are

introduced. These then imply that the ML estimator is inconsistent.

Consider as a simple example of this inconsistency an underlying exponentially dis-
tributed variable and observations falling into either of the two intervals [0, 1] and (1, 00)
with the indicator variable d; = 1 for the latter interval. Let 6; = aD;_1 in the true case
and 0; = ad;_; in the assumed case. The score for the assumed model is

T

dt . e—l/(ozdtfl)

Oln L
da tz_; a?d;_q [1 — efl/(o‘dtfl)] ’

with d; =0 or dy = 1. As E(d¢|A¢i—1) = Pr(d; = 1]A¢—1) = exp(—1/(aD;—_1)), a first order
expansion of the score 91n L/0& around the true parameter value and manipulation shows
that the bias depends on D;_1 —d;—1. As this difference can be expected to be larger than
zero, the ML estimator & can be expected to be too large, or alternatively the estimated
mean can be expected to be too small.

The ML estimator is consistent and asymptotically normal when oy = ag = ... =
ag = 0 (no measurement errors as dy;—;,7 = 1,...,q, are not included in ;) and the
By;--- B, parameters are such that the {D;} sequence is stationary. An early proof of
the asymptotic results for a scalar case is due to Kulldorff (1961), who also studied the loss
in efficiency that results from discretizing the time scale. Engle and Russell (1998) consider
the case of explanatory variables, continuous durations and the QML estimator. Given
a correctly specified stationary model the QML estimator can be shown to be consistent

and asymptotically normal.



The EM-algorithm (Dempster, Laird and Rubin, 1987) provides a general framework
for dealing with aspects of the limited information in the {d;} sequence that we have in this
case. If we take the lagged d;_; variables as is and focus only on the grouped d; indicator,
we can easily extend the constant parameter and grouped exponential model of Little
and Rubin (1987, ch. 11). The M-step maximizes the conditional expectation of the log-
likelihood function for Dy given d; with respect to t, i.e. Q(ap, ) = Ey [ln L(D)|d,A] =
Zf:r [— Inzp — E¢(Dt|dt,At_1) /z4|. The required conditional expectation is given
in (3) and should be evaluated at % (the E-step). The E and M steps are iterated until
convergence. Note that the M-step uses the continuous exponential variable log-likelihood
function and should therefore be computationally straightforward. The score vector is
Qo = ST 2 [EQZ(Dﬂdt,At_l) — 2| /(zeh)? and the Hessian is 92Q/0pdy’ =
STt (2

Consider next an EM-algorithm that attempts to account also for the presence of d;_;
when the true D;_; would have been preferred in 6,. Little and Rubin (1987, ch. 8)
consider a problem of missing observations in a Gaussian AR(1) model, but there appears
to be no reported research on the type of problem we have in mind. Recall that the
density is a conditional one so that conditioning on past d;—; and not on future d;; appears
reasonable. Then Q(v, %) = S/, —E;(In z|dy, Ay_1) — E@(Dt/zt't,b\czt, At,l)], where
dy = (dy, ... ,d;). This expression is a difficult one to use as it involves taking expectations
of past D;_; with respect to more recent d;, because it involves nonlinearities, and because
different time periods are interwoven in the final expectation expression. Therefore, no
attempt is made at obtaining an exact EM-algorithm in this paper.

An ad hoc EM-algorithm could use E;p(Dt|dt, A1) for all t and hence also for those
lags that are included in the z; vector. The performance of this estimator is studied by
Monte Carlo simulation in the next section and also used empirically.

The simulated maximum likelihood (SML) estimator (Gourieroux and Monfort, 1991)
offers an interesting approach to coping with the discreteness of the data. Unfortunately,
the results of Cappé et al. (2002) suggest that the SML estimator may be a very time
demanding exercise as the number of replications should increase with the number of
observations. For high frequency data the sample size is usually large. Note also that the
current context differs from the dynamic limited dependent variable model considered by,

e.g., Lee (1997).



An obvious way of attempting to avoid the bias arising from measurement errors in
lagged variables would be to specify the joint distribution for {A;}. It would then be
possible to avoid the measurement error problem by accounting for the discretization
for all t. Unfortunately, such modelling would also be subject to even larger risks of
distributional misspecification as multivariate distributions can come in many alternative
shapes. Computationally it is potentially a difficult problem. Closely related to this
idea and more directly focusing on the discrete data would be a direct specification of an
inhomogeneous Markov chain with transition probabilities depending, e.g., on x;.

The geometric distribution is the discrete time equivalent of the exponential distribu-
tion and with a conditional interpretation the lagged d;_; presents no problem. When data
is genuinely continuous this can at most be regarded as an approximation. The likelihood
function for a mean p, and variance p,(1+ ;) geometric distribution is (e.g., Cameron and
Trivedi, 1998) L = HZ;T p (1 + )~ 1%, For time invariant x the maximum likelihood
estimator is of the explicit form; i = Y7 dy/T and V(1) = u(14p)/T. Tt can be demon-
strated that the estimator is biased and inconsistent when data is generated according to
a continuous exponential model. To specify a dynamic model we set the conditional mean
p; = 0; = 243 to obtain the score vector d1In L/ = ST 2! [d; — 23] / [zeab(1 + z43))).
The covariance matrix of the estimator is estimated by the inverse of the information

matrix S0 2)z;/ [2:9(1 + z;1))] and evaluated at estimates.

3. MONTE CARLO STUDY

In this section we study the properties of the estimators for the various model versions
when data are artificially generated according to conditional exponential and Weibull
models.

We specify the conditional mean function that is used in generating the underlying D;

data as
Qt = Q) + &1Dt_1 -+ 51(9,5_1.

Engle and Russell (1998) give the following moment results for the exponential model

o0
l—ag— 054
1— 37 — 2B,

V(D)) = E%(D,).
(D) 1—5%—204151—204%X o

E(Dy)
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These results can be obtained by substituting 6;,_1e;—1 for D;—1 with €,_1 exponentially
distributed with parameter one. From the variance expression it follows that the param-
eters should satisfy 202 + % + 2a13; < 1 and from the mean expression they should
also satisfy a + 8 < 1. In the experiments with Weibull distributed durations we em-
ploy standardization to obtain the mean and variance of the exponential model, cf. the
Appendix.

The study uses a3 = 0.2,0.3 and 0.4, 8; = 0.15,0.2 and 0.25, and a9 = 2.5,5 and
10, to give mean durations in the range 3.8 — 28.6 seconds with variances in the range
4.2 —50.5. For the Weibull model we use v = 0.8, which corresponds to negative duration
dependence. The time series length is set at T' =5 000 and 50 000. The T' = 5 000 case
corresponds to a short time series length for frequently traded stocks, and T = 50 000 is
used only for the shortest durations (ap = 2.5) and exponential data. In each design cell
1000 replications are generated starting from the same initial seed. In generating the series
an initial part of 100 observations is dropped. Data are next discretized in accordance
with the discussion in Section 2. The results are reported in terms of bias and mean square
error (MSE) measures in Figures 2-3 and in Tables A1-A5 of the Appendix. We confine
the presentation of results mainly to the a;y and 3, parameters and the exponential model
for T'=5 000.

The following models and estimation algorithms are used: (i) the continuous time
exponential model (indicated by C) serves as a base case and is estimated by ML and a
scoring algorithm. All other data sets are based on discrete duration {d;} sequences. (ii)
The same ML algorithm as in (i) is used with discrete data (indicated by D). Note that
for d; = 0 we use d; = 0.5 instead. This corresponds to the mid-interval value as for other
di-values. (iii) the grouped data ML estimator with d;_; in the 6, function is estimated by
a BHHH algorithm (indicated by G); (iv) the EM-algorithm with D; replacing D; for all ¢
is estimated by alternating between a ML and an E-step (indicated by EM). Hence, even if
data is generated as Weibull distributed the employed density underlying the estimators is
throughout the exponential. Note that all estimators are conditional ones, as estimation is
throughout conditional on initial observations. The number of iterations is limited to 100
and true parameter values are used to initialize iterations. All computations are performed
using Fortran code on a 1.9 GHz Laptop.

The biases of the estimators of a3 and 3, are displayed in Figure 2 for 7" = 5 000
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and exponential data. It is quite obvious from the patterns for both parameters that the
ML estimator based on continuous data has small bias. All other estimators are based
on discretized data and manifest some bias for short durations, while bias is much less
of an issue for longer durations. The largest bias for a; = .2 and the shortest duration
of 3.8 seconds is noted for the grouped data ML estimator and amounts to 6 percent.
For the EM-algorithm the corresponding bias is less than 3 percent. For both parameters
there is a clear-cut ranking of the estimators, in particular for the short mean durations.
The biases of the EM-algorithm are smaller than the biases of the discretized data ML
and grouped data ML estimators. It appears that the grouped data ML estimator has
the weakest performance. As the EM-algorithm in this particular case is rather fast to
calculate it is our tentative choice of a best estimator. Table Al contains the detailed
biases (all multiplied by 100) for the parameter estimators. For T'= 50 000 corresponding
results are given in Table A3 for short mean durations (ap = 2.5). The results reiterate
the main conclusions derived from Figure 2. It is quite apparent that all estimators but
the continuous data ML estimator (C) have a bias and that the EM-algorithm comes out
as the least biased estimator for discretized data. For Weibull data, cf. Table A4, the
internal ranking between estimators remain relatively unaltered.

The MSE results of the a1 and 3; estimators are exhibited in Figure 3 for 7' =5 000
and the exponential data. When it comes to the MSEs for 3, the most apparent feature
is their striking similarity across mean durations. For this parameter the MSE is then
completely dominated by the variance component. For oy there is some variation for short
durations and for the long ones (see also Table A2). The MSE of the EM-algorithm is not
much different from those of the continuous duration ML estimator based on discretized
data and the grouped data ML estimator. Among the latter two, the grouped data ML
estimator has the weaker performance for short mean durations. For T = 50 000 there is
an expected drop in MSEs due to sample size, but the ranking between estimators remain
unaltered. As expected the MSEs of the base case ML estimator for the exponential model
(C) are the smallest in most cases, and also for the Weibull generated data, cf. Table A5.

In summary, among the estimators accounting for discretized data model the EM-
algorithm is the preferred estimator in terms of bias. With respect to MSE it is not worse
than the two competitors, though differences are quite small. No estimator manages to

completely avoid bias for short mean durations.
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4. EMPIRICAL RESULTS

4.1 Data and Descriptives

Empirical results are reported for 15 days of trading (July 2, 2002 — July 22, 2002) in
Ericsson B at the order driven Stockholmsborsen stock exchange in Stockholm. The data
were downloaded from the Ecovison system and processed further by the authors. The
number of observed durations or the time series length is, after some reduction due to day
changes, 57 735. On average there are 3849 durations per day. Figure 4 gives a histogram
of the durations. The estimated average of the integer-valued duration is 7.4 seconds with
a standard deviation of 11.2 seconds. The average varies between 2.9 to 13.5 seconds over
the 15 days. About 79 percent of the durations are 10 seconds or shorter and the longest
duration is 403 seconds. To give an indication of the trading volume, the number of traded
stocks during the first day of the sample period is 12 596 496 with a closing price of 14.90
SEK. The trading volume in the major summer vacation month of July is usually smaller
than during other months.

Table 1 reports the one step transitions (in row percent) between successive durations.
The matrix is asymmetric so that independently of the size of d;—1 the next duration d;
is most likely shorter. For instance, given dy_1 = 3, 52.7 percent of the durations at ¢
can be expected to be shorter than or equal to d; = 3. Figure 5 gives the autocorrelation
function for the time series of successive durations. The autocorrelations are quite small
but the function decreases only slowly. Note that all autocorrelations are positive. The
partial autocorrelations decrease rather quickly and are approximately zero after 5-6 lags.
The patterns of Table 1, Figure 5 and the partial autocorrelation function indicate that
the model should be able to capture low order both autoregressive and moving average
effects.

Figure 6 exhibits the seasonal pattern across the hours of the day. There appears
to be a weakly increasing pattern so that trading is slightly less frequent (longer dura-
tions) towards the end of the trading day. There appears to be no strong reasons for
deseasonalizing the series as done in some previous studies.

For a pure time series analytical approach (i.e. 7 = 0 in (4)) a reasonable starting
point is to search for a model with p < 3 and ¢ < 3. In addition, in the final models

we include as explanatory variables the price (mean 14.61, standard deviation 1.90), the
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Figure 4: Histogram of discrete durations d; (1" = 57 735, the one percent of durations
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Table 1: Transition matrix between successive durations (only durations and their lags

shorter than 10 seconds are included in the table; in percent).

dy
di—1 0 1 2 3 4 ) 6 7 8 9 10
0 16.8 214 116 85 65 5.7 41 35 26 22 1.8
1 186 195 119 91 73 55 45 33 30 21 1.9
2 149 180 126 97 76 6.3 48 35 29 24 22
3 13.8 173 123 93 75 57 47 37 30 25 22
4 126 148 116 93 78 69 49 39 33 29 21
) 116 145 123 106 7.7 56 43 41 32 33 19
6 122 138 100 &7 71 6.1 50 45 33 30 23
7 123 136 93 79 79 6.1 49 45 37 31 3.0
8 11.8 129 97 84 73 63 55 43 40 34 25
9 119 121 87 78 74 64 53 42 40 28 28
10 11.5 120 100 85 72 6.6 40 31 42 29 27
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spread (0.10, 0.02) and the number of traded stocks (2134.5, 1.48-10°) ending the previous
duration. Including the first two variables as changes instead of as levels was rendered
empirical support, see below. For example, the price part of the model, mip;_1 + Topi_o,
was used and empirically we found 77 ~ —73. This suggests the use of a restricted

m(pi—1 — pr—2) = TV pi—1 specification, i.e. in terms of a change.

4.2 FEstimation Results

To estimate the parameters we assume three parametric density specifications that have
been used previously — the exponential, the Weibull and the Burr (see the Appendix for
a brief account of the latter two distributions). The Weibull contains the exponential
model as a special case. The Burr model is more flexible than Weibull in that it has
more parameters and then a more flexible hazard function. The Burr model does not
nest neither the exponential nor the Weibull models, so that straightforward use of, e.g.,
likelihood ratio tests for model selection is ruled out. We employ two versions of the
EM-algorithm for the exponential model.

The continuous exponential model served as a tool for determining the model specifi-
cation.! The best model has R? = 0.1. There is some remaining serial correlation in all
models to be reported and this could not be eliminated, cf. Figure 5 for the autocorrela-
tion function corresponding to column one of Table 2.2 Note that no serial correlations
are determined for the discretized models. No serial correlation remains in the squared
residuals, except for in the Burr model and for the model of the final column of Table 2.
Individual correlations are, however, quite small and the Ljung-Box statistic is obviously
influenced by the large sample size.

The estimation results are presented in Table 2-4. The parameter estimates are
throughout almost exclusively of the same sign, roughly of similar sizes and when sig-
nificant this happens across models and estimators. Note that there are more lags in these
models than in most previous models.

Table 2 reports results based on an assumed, continuous variable exponential model.

It is found that the estimated models of this table (and other tables) satisfy the station-

'In this case and whenever continuous variable methods are employed 0 is replaced by 0.5 seconds to

reflect mid-interval-value in the same way as for longer durations.
2The residual is defined as 7+ = (d¢ — E(D:|A¢—1)/V/?(D¢|A¢—1), where E(.) and V(.) are different

for the different distributions. The squared residual is 2.
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Table 2: Maximum likelihood estimates for alternative specifications of the continuous

exponential model.

Variable Coeft s.e. Coeft s.e. Coeff s.e. Coeft s.e.
di—1 0.0378 0.0029  0.0381 0.0029  0.0408 0.0030  0.0356 0.0030
011 0.8962 0.0603  0.9162 0.0756  0.8712 0.0524  0.9905 0.0149
() -0.2634 0.0803 -0.3072 0.0966 -0.3350 0.0697 -0.3120 0.0185
013 0.3282 0.0564  0.3506 0.0645  0.4818 0.0041  0.2834 0.0275
Price change 2.8274 0.3564 - 3.1143 0.3419 1.6284 0.2899
De—1 - 0.4985 0.0090 - -
Di_o - -0.4954 1.3161 - -
Spread change -1.7938 1.1494 -0.8952 0.8908 - 1.0475 1.0689
S¢—1 - - -1.0680 0.8481 -
St—2 - - 1.2123 1.3161 -
Volume 0.6266 2.6438 -0.7224 1.1746  0.8041 1.1797 -
Vt—1 - - - 0.6973 0.0048
() - - - -0.6945 1.3161
Constant 0.0103 0.0354 -0.0250 0.1116 -0.0038 0.0935  0.0066 0.0531
LB1g0 235.4 233.1 234.9 382.5
LB%y, 6.7 6.2 6.7 828.6
InL -165860 -165860 -165859 -165743

Notes: Volume pertains to the previous transaction, while v;is the accumulated
(within the day) trading volume. Both are throughout devided by 10 000 000. LBjgg
is the Ljung-Box statistic of the standardized residual over 100 lags. LB%OO

is the same statistic for squared residuals.
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Table 3: Parameter estimates for the exponential model.

ML-Continuous ~ ML-Grouped EM-Grouped EM-full
Variable Coeft s.e. Coeff s.e. Coeft s.e. Coeff s.e.
di—1 0.0378 0.0029 0.0380 0.0029 0.0379 0.0029 0.0403 0.0029
0r—1 0.8962 0.0603 0.9172 0.0548 0.8800 0.0532 0.8841 0.0530
Or—o -0.2634 0.0803 -0.3036 0.0742 -0.2681 0.0712 -0.2693 0.0704
03 0.3282 0.0564 0.3473 0.0522 0.3492 0.0507  0.3337 0.0496

Price change 2.8274 0.3564  2.9936 0.3350  3.1907 0.3330  3.1266 0.3303
Spread change -1.7938 1.1494 -3.0104 1.0554 -2.9918 1.0574 -1.4293 1.0879

Volume 0.6266 2.6438  0.8230 2.5724  0.9936 2.5879  0.7678  2.5562
Constant 0.0103 0.0354  0.0092 0.0317  0.0078 0.0311  0.0096  0.0314
LB1oo 235.4 - - -
LB2y, 6.7 - - -
InL -165860 -131050 -165096 -165105

Notes: All estimation results are obtained by Fortran coded programs. Repeated use is
made of a simplex algorithm and the outer product gradient is used for the covariance
matrix. EM-full is the EM-algorithm used in the Monte Carlo experiment. EM-Grouped
is the grouped data EM-algorithm estimator.

arity condition on the a and 3 parameters, albeit with a rather narrow margin. Initially
alternative lag structures (different p and ¢ values) were tried. Table 2 also reports on
how explanatory variables should be included. There is strong support throughout for
utilizing change variables for the price and spread. If, e.g., the price follows a random
walk the change corresponds to the innovation or the unpredicted new information over
the previous duration. A positive price change leads to a longer duration. The effect of the
spread change is negative but not significant. A higher trading volume prolongs the next
duration but not significantly so. The final column suggests that separate inclusion of v;_1
and v;_g is preferable judging by the log-likelihood values. However, the serial correlation
properties speak against this specification. The change variables will be retained in all
further model estimations.

In Table 3 a comparison within the exponential model of using continuous or grouped
data is reported. There are no substantial differences between the ML estimators based

on the two data types. The two versions of the EM-algorithm are quite similar, too.
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Table 4: Maximum likelihood estimates for alternative model specifications.

Weibull Burr
Continuous Grouped Continuous Grouped
Variable Coeff s.e. Coeft s.e. Coeff s.e. Coeft s.e.
di—1 0.0393 0.0425  0.0437 0.0042  0.0386 0.0033  0.0418 0.0042
0i—1 0.8875 0.0678  0.7792 0.0698  0.9994 0.0629  0.9990 0.0771
() -0.2967 0.0979 -0.2748 0.0860 -0.5001 0.0848 -0.5159 0.1045
03 0.3663 0.0629  0.4455 0.0631  0.4434 0.0589  0.4679 0.0709

Price change 3.0200 0.4241 3.1342 0.4640  2.9754 0.4057  2.5722 0.4725
Spread change -1.2306 1.3314 -1.1535 1.4182 -0.7020 1.0991 -0.5374 1.3905

Volume 0.6712 3.0271  0.2148 3.3013  -0.9633 2.2659 -0.0063 3.1934
Constant 0.0132 0.0425  0.0045 0.0470  0.0286 0.0405  0.0044 0.0426
¥ 0.9130 0.0023  0.8054 0.0005  1.1263 0.0019  0.8286 0.0044
A - - 0.3600 0.0083  0.0350 0.0032
LB10o 229.7 - 201.3 —
LB%y, 7.1 - 240.9 —
In L -165409 -129178 -164497 -129152

Note: See Table 3 for explanations.

Given this result, arguments supportive of the conventional QML estimator even if data
are discretized are strengthened.

Table 4 studies this issue further; if the QML is to be useful we would expect no
large changes in parameter estimates even if the exponential model is not the ’true’ one.
The qualitative conclusions correspond to those of the exponential model, though sizes
of estimates are slightly different. The exponential model is nested within the Weibull
model and the exponential can be rejected against the Weibull model (¥ is significantly
smaller than one). The Weibull model is not nested within the more general Burr model,
though the v and A estimates of the latter model may indicate that the shape of the
Weibull hazard is not supported by data. The Weibull duration dependence parameter ~y
is significantly smaller than one, which implies a decreasing hazard function and that the
exponential model can be rejected. In a similar way the form of the Burr hazard function
is an indication against the exponential model.

Figure 7 shows the Burr and Weibull hazard functions, when 6 is replaced by the
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Figure 7: Hazard functions based on grouped ML estimates of Table 4 and evaluated at

the sample mean of the duration variable, and a life table estimated hazard function.

sample mean and estimates from Table 4 are used for v and A\. The hazard functions
are hardly distinguishable and decrease rapidly within the first second, but are roughly
constant thereafter. Hence, these hazards differ the most from the life table estimate in
the (0,1) interval and discrimination between the two parametric models would obviously
be much strengthened is short and continuous duration data in the (0,1) interval were
available.

We also studied whether the response to news is symmetric in the sense that pos-
itive and negative news affect subsequent durations in the same way. The potentially
asymmetric response to news (the variables are constructed as Vz;” = max(0, V) and
Vz, = min(0, V;)) is studied in terms of the price and spread changes within the frame-
work of the grouped data Weibull and Burr models. By likelihood ratio tests we find no
evidence of asymmetric response to price changes and the two estimates for positive and
negative changes are quite similar. There are different responses to spread changes de-
pending on their signs, but not significantly so. Individually neither of the spread change

effects appear to have a significant effect.
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5. CONCLUSIONS

The paper has discussed the discrete nature of duration measures between transactions in
stocks and studied the consequences of this discretization of a continuous time scale.
Grouped maximum likelihood and EM-algorithm estimators were discussed. In the
small Monte Carlo study the EM-algorithm that accounts for the discrete nature of the
data both in the outcome and the lagged explanatory variables comes out as the best
estimator of the compared ones. In the empirical study the differences between estimators
are generally quite small, and the EM-algorithm and ML estimators based on discrete
data are not too different from ML based on grouped data and Weibull and Burr models.
When it comes to the effects of explanatory variables the study provided support
for using changes rather than levels to reflect news. There is throughout a significant
and positive effect of news about prices and a negative effect of a change in the spread.
The spread effect is not significant, however. A higher volume has an insignificant but
prolonging effect in most cases. We could not find statistically significant support for an
asymmetric response to news about spreads nor about prices. The log-likelihood function
value of the Burr is larger than for other models but the models are not nested. In
addition, the serial correlation properties of the exponential and Weibull models speak in
favor of these two models. A generalized gamma was also employed and provided a better
fit to the data than both the exponential and Weibull models. A reason for not reporting

generalized gamma results is the numerical problems we faced in obtaining standard errors.
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APPENDIX

Weibull

Using the specification of Bauwens and Giot (2001, pp. 98-99) the Weibull model has
hazard function A(D) = yvDY~1/#7, which gives the integrated hazard function A(D) =
(D/0)". From this follows the distribution function F(D) = 1 — exp(—A(D)), expected
value E(D) = 0 I'(1+~~!) and variance V(D) = 6* [[(1 +2y~!) —=I'(1 +~v7!)]. Random
durations can be generated according to D = 6[—In(1 — u)]”fl, where u is a uniform
[0,1] random deviate. A standardization of D to get the moments of the exponential
model is obtained by D, = a~'/2(D — b), where a = L(1+2y 1) —T(14+~1)] and
b=T(1+~"1) —al/2

Corresponding to the log-likelihood function in (6) we have

T T
L = Y =Y Infexp(—n, [(de —1)/6.)) — exp(— [(d; +1)/6,)]]

T
= > Infgu — g2, (A.1)

where the final step is notational. The derivatives for [; are

ol 1 [—nt (di — 1) In (dﬁo—;l)] g1t + [(dt +1)"1n (dﬁo—jl)] g2t
8_’}’ - @ git — g2t
1\ gl
R »
ol oly 00, , Ol

oy o0 oy o6

The conditional expectations corresponding to those in (3) and required for EM-algorithms

are of the form

-1 Y
B(Difds = 0,A,y) = ¢ LLTT L6 (A.3)
1—e1/0:

plort (8] P [ (2]
o—(h—1)/8; _ o~ (k1) /6, ,

E(Dyldy =k, Av—1) = ¢

where ¢ = 0,I'(1 + y~1) and P(.,.) is the incomplete gamma function (e.g., Press et al.,

1992, p. 209).
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Burr

Bauwens and Giot (2001, pp. 101-104) give the Burr density function:

=2 (2) e (2)] »

with mean and variance

L(14~"Hr(A™
E(D) = 0 , for v/A > 1
D) AT+ AT v/
1
V(D) = 6? A5
@) AP 4 A7 (4.5)

x |T(1+2y Hr(A T+ 2971 —

ra+ »y—l)f‘()\—l)} , for v/A > 2.

AD(1+ A7

The survival and hazard functions are

F(D) = [1 +A <§)q o —

no)y = 1 <§>V1 [1 A <§ﬂl. (A.6)

Using (A.4)-(A.6) it is then possible to obtain the log-likelihood function corresponding
to (6) and then to obtain ML estimates. The derivatives of F(D) with respect to -, 0

(and 1)) and A make up the score vector and are given by

\6
dF (D) _ (D L
20, 0 (0) ¢
OF(D) _ OF(D) 99, , OF(D)
o 00, o ow, (A7)
OFa()\D) = 3 [)\_1 In(c) — ¢! <% q N
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Table Al: Bias measures (times 100) of estimators for data generated by an exponential

model in Monte Carlo experiment, T" = 5000.

True [e7y) a1 51
apay /j ¢ D G EM C€C D G EM C D G EM

25 0.2 015 1.50 3.17 -3.02 -2.43 -0.03 -0.90 -1.18 -0.51 -0.34 1.12 1.52 0.82
25 0.2 0.20 1.82 2.65 -2.70 -2.15 -0.03 -0.77 -1.00 -0.43 -0.38 0.97 1.28 0.69
25 0.2 0.25 220 242 -241 -1.97 -0.02 -0.67 -0.85 -0.40 -0.43 0.78 1.10 0.63
2,5 03 0.15 1.10 2.83 -1.54 -1.52 -0.02 -0.82 -1.30 -0.36 -0.20 0.85 1.24 0.48
25 03 020 1.31 2.33 -1.54 -1.49 -0.02 -0.70 -1.09 -0.31 -0.22 0.73 1.08 0.45
2.5 03 0.25 1.54 2.05 -1.32 -1.00 -0.02 -0.58 -0.89 -0.25 -0.24 0.57 0.88 0.31
25 04 015 0.97 254 -0.12 -1.04 -0.01 -0.71 -1.37 -0.23 -0.14 0.61 1.01 0.29
25 04 020 1.13 2.08 -0.15 -0.84 -0.01 -0.59 -1.13 -0.18 -0.15 0.51 0.85 0.23
25 04 025 1.30 1.71 -0.14 -0.51 -0.01 -0.47 -0.88 -0.15 -0.16 0.40 0.67 0.16

5 0.2 015 3.15 3.64 070 164 -0.03 -0.28 -0.34 -0.17 -0.35 0.09 0.15 -0.11
0.2 0.20 3.88 3.64 1.18 250 -0.03 -0.23 -0.30 -0.14 -0.41 0.03 0.08 -0.21
0.2 025 4.76 349 224 336 -0.02 -0.21 -0.26 -0.13 -0.48 0.01 -0.04 -0.27
0.3 0.15 228 290 080 129 -0.02 -0.25 -0.38 -0.13 -0.21 0.12 0.20 -0.05
0.3 0.20 273 2.77 120 190 -0.02 -0.22 -0.31 -0.11 -0.23 0.08 0.12 -0.10
0.3 0.25 3.27 2.82 1.62 281 -0.02 -0.19 -0.26 -0.10 -0.26 0.04 0.06 -0.17
0.4 0.15 201 2.75 142 162 -0.02 -0.22 -0.38 -0.08 -0.15 0.07 0.16 -0.08
0.4 020 235 245 154 207 -0.02 -0.18 -0.32 -0.07 -0.16 0.06 0.13 -0.11

[ B L G S L S S L N e

0.4 025 276 256 196 3.07 -0.02 -0.15 -0.25 -0.05 -0.16 0.02 0.06 -0.17

—_
o

0.2 0.15 6.48 599 539 733 -0.03 -0.10 -0.11 -0.07 -0.37 -0.19 -0.25 -0.40

—_
o

0.2 0.20 8.04 7.19 6.83 9.84 -0.02 -0.08 -0.10 -0.06 -0.43 -0.27 -0.31 -0.52

—_
o

0.2 0.25 9.95 831 9.84 12.62 -0.02 -0.07 -0.06 -0.06 -0.50 -0.32 -0.38 -0.63

—_
o

0.3 0.15 4.66 4.78 4.06 6.05 -0.02 -0.09 -0.11 -0.06 -0.21 -0.11 -0.12 -0.27

—_
o

0.3 0.20 5.64 537 4.75 7.80 -0.02 -0.07 -0.10 -0.05 -0.24 -0.14 -0.14 -0.33

—_
o

0.3 0.25 6.81 6.14 5.87 10.11 -0.02 -0.07 -0.08 -0.04 -0.27 -0.17 -0.18 -0.40

—_
o

0.4 0.15 4.27 450 3.73 5.98 -0.04 -0.09 -0.11 -0.03 -0.15 -0.08 -0.07 -0.23

—_
o

0.4 020 5.36 525 4.34 7.70 -0.06 -0.10 -0.10 -0.03 -0.16 -0.09 -0.08 -0.27

—_
o

0.4 025 718 6.73 5.09 10.03 -0.11 -0.15 -0.07 -0.02 -0.17 -0.11 -0.11 -0.33
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Table A2: MSE measures (times 100) of estimators in Monte Carlo experiment, 7" = 5000.

Data are generated as exponentially distributed.

True Qo a1 51
ag a1 By C D G EM ¢C D G EM C D G EM

2.5 0.2 0.15 6.38 726 6.89 7.01 0.03 0.04 0.04 0.04 0.48 0.54 0.54 0.54
2.5 0.2 0.20 705 779 733 7.57 0.03 0.04 0.04 0.03 0.47 0.51 0.50 0.51
2.5 0.2 0.25 77T 829  7.57 815 0.03 0.04 0.04 0.03 0.45 0.47 0.45 0.48
2.5 0.3 0.15 349 383 3.62 3.70 0.04 0.04 0.05 0.04 0.21 0.22 0.23 0.22
2.5 0.3 0.20 3.87 4.09 384 4.05 0.04 0.04 0.05 0.04 0.20 0.21 0.21 0.21
2.5 0.3 0.25 4.28 447 407 444 0.04 0.04 0.04 0.04 0.19 0.20 0.19 0.20
2.5 04 0.15 243 260 248 257 0.04 0.05 0.06 0.04 0.11 0.12 0.12 0.12
2.5 0.4 0.20 272 286 2.67 279 0.04 0.05 0.05 0.04 0.11 0.12 0.11 0.11
2.5 04 0.25 3.04 314 287 3.09 0.04 0.04 0.05 0.04 0.10 0.11 0.10 0.11

5 0.2 0.15 25.51 26.38 2592 26.03 0.03 0.03 0.03 0.03 0.48 0.49 0.49 0.49

5 0.2 0.20 28.19 29.05 2849 28.76 0.03 0.03 0.03 0.03 0.47 0.48 0.47 0.48
5 0.2 0.25 31.05 31.84 31.46 31.70 0.03 0.03 0.03 0.03 0.45 0.46 0.46 0.46
5 0.3 0.15 13.95 14.27 14.17 14.17 0.04 0.04 0.04 0.04 0.21 0.21 0.21 0.21
5 0.3 0.20 15.48 15.79 15.55 15.76 0.04 0.04 0.04 0.04 0.20 0.20 0.20 0.21
5 0.3 0.25 1712 1732 17.24 1742 0.04 0.04 0.04 0.04 0.19 0.20 0.20 0.20
5 04 0.15 9.73 991 983 9.89 0.04 0.04 0.04 0.04 0.11 0.11 0.11 0.11
5 0.4 0.20 10.91 11.03 11.00 11.08 0.04 0.04 0.04 0.04 0.11 0.11 0.11 0.11
5 04 0.25 12.23 1229 12.15 12.44 0.04 0.04 0.04 0.04 0.10 0.10 0.10 0.11
10 0.2 0.15 101.95 103.00 102.42 103.02 0.03 0.03 0.03 0.03 0.48 0.48 0.48 0.48
10 0.2 0.20 112.68 113.32 113.34 113.87 0.03 0.03 0.03 0.03 0.47 0.47 0.47 0.47
10 0.2 0.25 124.16 125.31 113.13 126.74 0.03 0.03 0.03 0.03 0.45 0.45 0.44 0.45
10 0.3 0.15 55.77 56.23 55.78 56.68 0.04 0.04 0.04 0.04 0.21 0.21 0.21 0.21
10 0.3 0.20 61.90 62.16 61.79 63.08 0.04 0.04 0.04 0.04 0.20 0.20 0.20 0.20
10 0.3 0.25 68.54 68.50 68.38 70.20 0.04 0.04 0.04 0.04 0.19 0.19 0.19 0.20
10 0.4 0.15 39.38 39.53 38.95 39.69 0.04 0.04 0.04 0.04 0.11 0.11 0.11 0.11
10 0.4 0.20 44.84 45.05 43.67 45.04 0.05 0.05 0.04 0.04 0.11 0.11 0.11 0.11
10 0.4 0.25 52.01 52.18 48.62 51.23 0.05 0.05 0.04 0.04 0.11 0.11 0.10 0.11

23



Table A3: Bias and MSE (times 100) sof estimators for the exponential model with ag =
2.5,T = 50000.

True Qg a1 081
ar By C D G EM C D G EM C D G EM

Bias
0.2 0.15 -0.15 1.36 -3.73 -3.99 0.02 -0.84 -0.57 -0.44 0.02 1.50 1.39 1.13
0.2 0.20 -0.13 0.56 -3.79 -4.14 0.02 -0.72 -0.48 -0.38 0.02 1.39 1.26 1.10
0.2 0.25 -0.10 -0.15 -3.88 -4.14 0.02 -0.61 -0.41 -0.32 0.01 1.27 1.14 1.02
0.3 0.15 -0.14 1.60 -3.47 -2.86 0.02 -0.77 -0.47 -0.30 0.02 1.05 0.99 0.70
0.3 020 -0.12 0.86 -3.48 -2.94 0.02 -0.65 0.39 -0.26 0.01 0.95 0.88 0.67
0.3 0.25 -0.09 0.31 -3.36 -2.78 0.02 -0.53 -0.31 -0.21 0.00 0.83 0.74 0.58
0.4 0.15 -0.12 1.41 -3.46 -2.20 0.02 -0.67 -0.37 -0.19 0.01 0.76 0.72 0.45
0.4 0.20 -0.10 0.79 -3.37 -2.17 0.02 -0.55 -0.29 -0.16 0.00 0.66 0.61 0.40
0.4 0.25 -0.07 0.32 -3.24 -2.06 0.02 -0.43 -0.22 -0.12 0.00 0.55 0.50 0.34
MSE
0.2 0.15 0.64 0.73 0.83 0.85 0.00 0.01 0.01 0.01 0.05 0.08 0.07 0.07
0.2 0.20 0.71 0.79 0.89 0.93 0.00 0.01 0.01 0.00 0.05 0.07 0.07 0.06
0.2 025 0.79 086 0.93 1.00 0.00 0.01 0.01 0.00 0.05 0.07 0.06 0.06
0.3 0.15 035 040 048 0.45 0.00 0.01 0.01 0.00 0.02 0.03 0.03 0.03
0.3 020 039 042 051 0.50 0.00 0.01 0.01 0.00 0.02 0.03 0.03 0.03
0.3 025 043 046 0.53 0.53 0.00 0.01 0.00 0.00 0.02 0.03 0.03 0.02
0.4 0.15 024 0.28 0.37 0.30 0.00 0.01 0.01 0.00 0.01 0.02 0.02 0.01
0.4 0.20 0.27 0.29 0.38 0.33 0.00 0.01 0.01 0.00 0.01 0.02 0.01 0.01
0.4 0.25 031 032 040 0.36 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01

24



Table A4: Bias measures (times 100) of estimators for data generated by a Weibull model

in Monte Carlo experiment, 7" = 5000.

True (o)) aq ﬂl
ooy /4 € D G EM C D G EM C D G EM

2.5 0.2 0.15 1.67 4.48 -1.52 -1.18 -0.04 -0.89 -1.23 -0.52 -0.37 0.90 1.35 0.65
2.5 0.2 0.20 1.97 3.65 -1.57 -1.15 -0.04 -0.80 -1.08 -0.48 -0.41 0.84 1.22 0.60
2.5 0.2 0.25 233 3.24 -1.39 -1.04 -0.04 -0.69 -091 -0.44 -0.45 0.68 1.00 0.53
2.5 0.3 0.15 1.22 3.46 -0.31 -1.01 -0.04 -0.96 -1.46 -0.48 -0.21 0.89 1.19 0.54
2.5 0.3 0.20 142 291 -0.38 -1.01 -0.04 -0.81 -1.23 -047 -0.23 0.74 1.02 0.53
2.5 0.3 0.25 1.64 2.38 -0.43 -0.85 -0.03 -0.72 -1.02 -0.39 -0.25 0.66 0.84 0.42
2.5 04 0.15 1.07 2.87 1.11 -0.83 -0.03 -0.94 -1.63 -0.47 -0.15 0.76 0.99 0.48
2.5 04 0.20 1.22 2.21 0.76 -0.72 -0.03 -0.81 -1.34 -0.40 -0.16 0.67 0.85 0.40
2.5 04 0.25 1.37 1.80 0.56 -0.47 -0.02 -0.68 -1.09 -0.35 -0.16 0.55 0.70 0.32

5 0.2 0.15 344 436 093 1.59 -0.04 -0.33 -0.38 -0.24 -0.38 0.01 0.09 -0.08

5 0.2 0.20 4.11 431 145 220 -0.04 -0.29 -0.31 -0.22 -0.43 -0.04 -0.01 -0.14
5 0.2 0.25 4.92 478 190 3.27 -0.04 -0.26 -0.26 -0.20 -0.48 -0.13 -0.08 -0.25
5 0.3 0.15 249 330 1.04 1.25 -0.04 -0.37 -0.42 -0.25 -0.22 0.13 0.13 0.01
5 0.3 0.20 292 324 1.09 174 -0.04 -0.31 -0.36 -0.21 -0.24 0.08 0.10 -0.04
5 0.3 0.25 343 3.41 136 260 -0.03 -0.28 -0.28 -0.19 -0.26 0.03 0.03 -0.12
5 04 0.15 2.17 2.88 1.51 1.58 -0.03 -0.37 -0.46 -0.24 -0.16 0.15 0.13 0.01
5 0.4 0.20 249 2.88 141 2.08 -0.03 -0.31 -0.36 -0.20 -0.17 0.10 0.09 -0.03
5 04 0.25 2.84 292 148 287 -0.02 -0.26 -0.29 -0.18 -0.17 0.06 0.05 -0.08
10 0.2 0.15 6.99 6.93 474 6.96 -0.04 -0.12 -0.10 -0.11 -0.39 -0.29 -0.28 -0.40
10 0.2 0.20 8.44 814 5.89 897 -0.04 -0.11 -0.08 -0.10 -0.44 -0.35 -0.34 -0.49
10 0.2 0.25 10.17 9.70 7.21 11.56 -0.04 -0.10 -0.07 -0.08 -0.50 -0.41 -0.38 -0.59
10 0.3 0.15 5.06 5.28 3.51 5.54 -0.04 -0.13 -0.10 -0.11 -0.22 -0.15 -0.16 -0.23
10 0.3 0.20 596 5.79 4.21 730 -0.04 -0.12 -0.08 -0.09 -0.25 -0.16 -0.18 -0.30
10 0.3 0.25 7.02 6.73 459 9.15 -0.03 -0.10 -0.06 -0.08 -0.27 -0.20 -0.19 -0.36
10 0.4 0.15 4.39 466 275 5.79 -0.03 -0.13 -0.08 -0.11 -0.16 -0.08 -0.09 -0.19
10 0.4 0.20 5.06 5.18 3.19 7.36 -0.03 -0.11 -0.02 -0.09 -0.17 -0.10 -0.12 -0.24
10 0.4 0.25 5.79 581 344 9.21 -0.02 -0.09 0.01 -0.07 -0.18 -0.12 -0.12 -0.28
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Table A5: MSE measures (times 100) of estimators for data generated by a Weibull model

in Monte Carlo experiment, 7" = 5000.

True Qo a1 51
ag a1 By C D G EM ¢C D G EM C D G EM

2.5 0.2 0.15 6.93 802 754 750 0.04 0.05 0.05 0.04 0.52 0.58 0.59 0.58
2.5 0.2 0.20 7.73 863 806 820 0.04 0.05 0.05 0.04 0.52 0.57 0.55 0.56
2.5 0.2 0.25 858 9.29 833 899 0.04 0.05 0.05 0.04 0.50 0.53 0.49 0.53
2.5 0.3 0.15 3.88 432 405 413 0.05 0.06 0.07 0.05 0.23 0.26 0.26 0.25
2.5 0.3 0.20 4.35 469 436 452 0.05 0.06 0.06 0.05 0.23 0.25 0.24 0.25
2.5 0.3 0.25 4.85 515 460 498 0.05 0.05 0.06 0.05 0.23 0.24 0.22 0.24
2.5 04 0.15 2.78 3.03 283 286 0.06 0.07 0.08 0.06 0.13 0.14 0.14 0.14
2.5 04 0.20 3.13 330 311 3.24 0.06 0.06 0.07 0.06 0.13 0.14 0.13 0.14
2.5 04 0.25 3.52 364 333 3.62 0.06 0.06 0.07 0.06 0.13 0.13 0.12 0.14

5 0.2 0.15 27.68 28.76 28.04 28.53 0.04 0.04 0.04 0.04 0.52 0.54 0.53 0.54

5 0.2 0.20 30.89 31.90 30.24 31.74 0.04 0.04 0.04 0.04 0.52 0.53 0.51 0.53
5 0.2 0.25 34.30 34.61 32.32 3498 0.04 0.04 0.04 0.04 0.50 0.50 0.47 0.51
5 0.3 0.15 15.53 16.00 15.49 15.87 0.05 0.05 0.05 0.05 0.23 0.24 0.23 0.24
5 0.3 0.20 1741 1777 16.80 17.74 0.05 0.05 0.05 0.05 0.23 0.24 0.22 0.24
5 0.3 0.25 19.41 19.62 17.90 19.69 0.05 0.05 0.05 0.05 0.23 0.23 0.21 0.23
5 04 0.15 11.10 11.33 1098 11.29 0.06 0.06 0.06 0.06 0.13 0.13 0.13 0.13
5 0.4 0.20 12.53 12.69 12.02 12.83 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13
5 04 0.25 14.09 14.21 13.07 14.46 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13
10 0.2 0.15 110.67 111.45 109.69 111.87 0.04 0.04 0.04 0.04 0.52 0.53 0.52 0.53
10 0.2 0.20 123.51 123.78 118.99 124.81 0.04 0.04 0.04 0.04 0.52 0.52 0.50 0.52
10 0.2 0.25 137.17 137.78 128.08 139.06 0.04 0.04 0.04 0.04 0.50 0.51 0.47 0.51
10 0.3 0.15 62.10 62.36 60.59 62.79 0.05 0.05 0.05 0.05 0.23 0.23 0.23 0.24
10 0.3 0.20 69.63 69.73 66.31 70.74 0.05 0.05 0.05 0.05 0.23 0.23 0.22 0.24
10 0.3 0.25 77.65 T77.85 7146 79.24 0.05 0.05 0.05 0.05 0.23 0.23 0.21 0.23
10 0.4 0.15 44.40 44.83 43.28 45.25 0.06 0.06 0.06 0.06 0.13 0.13 0.13 0.13
10 0.4 0.20 50.12 50.30 4797 51.60 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13
10 0.4 0.25 56.36 56.54 52.61 58.76 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13
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