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Abstract

The paper considers conditional duration models in which durations are in continuous

time but measured in grouped or discretized form. This feature of recorded durations

in combination with a frequently traded stock is expected to negatively inßuence the

performance of conventional estimators. A few estimators that account for the dis-

creteness are discussed and compared in a Monte Carlo experiment. An EM-algorithm

accounting for the discrete data performs better than those which do not. Empirical

results are reported for trading durations in Ericsson B at Stockholmsbörsen for a

three-week period of July 2002. The incorporation of level variables for past trading

is rejected in favour of change variables. This enables an interpretation in terms of

news effects. No evidence of asymmetric responses to news about prices and spreads

is found.
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1. Introduction

This paper considers the discrete nature of empirical duration data in frequently traded

stocks. The output from a trading system records transactions to prevailing second and the

resulting durations then contain a large fraction of zeros and very short durations. We take

the continuous underlying duration density to be discretized and study the consequences

for the econometric treatment of such data. A second objective of the paper is to give

empirical evidence on the reaction to news in a speciÞc stock.

Engle and Russell (1998) suggest conditional duration models for high frequency or

intra-day time series data and emphasized the appealing properties of the quasi-maximum

likelihood (QML) estimator based on the exponential duration model. There is an increas-

ing amount of empirical research building on this QML estimator (e.g., Bauwens and Giot,

2001). Among the questions of interest in this Þeld is the reaction to news as reßected,

e.g., by indicators reßecting recent transactions (e.g., Easley and O�Hara, 1992; Engle and

Russell, 1998).

When the data are available in only a discretized form the QML estimator looses some

of its appeal. In essence, the consistency property requires a correct conditional mean

speciÞcation and when data is discretized this is much harder to achieve as the conditional

mean will then depend on the true underlying density. Kulldorff (1961, ch. 2) shows in a

time invariant case the inconsistency of the maximum likelihood (ML) estimator arising

from, e.g., using mid-interval values to represent the interval when data are discretized

or grouped. He also demonstrates that discretization and the use of mid-interval values

have more serious effects on the performance of ML estimators when the sample records

durations to belonging to only a few and wide groups or intervals for continuous durations.

For frequently traded stocks the groups are relatively few but the width is generally quite

small. We may then expect the inconsistency to remain, but the actual performance of

the ML or QML estimators may remain relatively advantageous. The inconsistency will

remain when the model contains explanatory variables. In addition, if the true duration

is viewed as continuous but only discrete time observations are available, any speciÞcation

containing lagged durations will then be contaminated by a measurement error in a way

to be made clear below.

In this paper we consider estimators that to some extent account for the outlined fea-

tures of the data. Grouped data ML estimators and EM-algorithm versions are among
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Figure 1: Examples of potential transaction times τ i and the registered duration variable

dt with the intervals of the underlying continuous duration variable Dt.

the studied estimators. We conduct a small Monte Carlo study focusing on the conse-

quences of the various speciÞcation choices and the chosen estimators. Empirical results

for a three-week period of transaction durations in Ericsson B at the order driven Stock-

holmsbörsen stock exchange in Stockholm are also to be reported. Of particular interest,

beyond the focus on estimators, is here the reaction to news and whether the response to

positive and negative news are different. We will use past price, spread and volume as

indicators of new information to the market.

In Section 2 we discuss the model and discuss the ML and EM-algorithm estimators

for discretized duration data. Section 3 reports the results from a set of Monte Carlo

experiments conducted to study the consequences of the alternative ways of handling the

discretized data. Section 4 reports the empirical results and the Þnal section concludes.
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2. Model and Estimators

Let the tth continuous duration be denoted by Dt. The duration arises as a difference

between two real transaction times, τ , indexed by k and k − 1, i.e. Dt = τk − τk−1.
When transactions are recorded at a second-level scale, the observed duration measure

dt = [τk]− [τk−1], where [.] signiÞes integer-value, is in seconds and hence integer-valued.
For a frequently traded stock the durations are on average short and then dt will take on

one value from a set {0, 1, 2, . . . ,Mt}, where max{Mt}Tt=1 is a relatively small number and
T is the length of the time series sequence of consecutive durations.

Figure 1 illustrates how the transaction times, τk, the continuous durations, Dt, and

the discretized durations, dt, are related. Note that, except for dt = 0, the dt-values

represent mid-interval values. For dt = 0 the mid-interval value is 0.5.

Given an assumption about the continuous and conditional distribution of Dt and

given the information set ∆t−1 = {D1, D2, . . . ,Dt−1} it is straightforward to obtain the
probability for dt equal to some integer k given ∆t−1, as

Pr(dt = 0|∆t−1) = Pr(Dt ∈ (0, 1]|∆t−1)
= Pr(Dt ≤ 1|∆t−1)
= qt1

Pr(dt = k|∆t−1) = Pr(Dt ∈ (k − 1, k + 1]|∆t−1) (1)

= Pr(Dt ≤ k + 1|∆t−1)− Pr(Dt ≤ k − 1|∆t−1)
= qt,k+1 − qt,k−1, k ≥ 1,

with qt0 = Pr(Dt ≤ 0|∆t−1) = 0.
In the sequel of this and the next section we only consider the conditional exponential

duration model, but any other reasonable duration distribution could have been considered

instead. By focusing on the exponential model the technical aspects are kept simpler

than for most other models, and the main ideas remain unaltered. For the exponential

conditional duration model with conditional mean E(Dt|∆t−1) = θt > 0 and conditional
variance V (Dt|∆t−1) = θ2t we get explicit expressions for qtk as

Pr(dt = 0|∆t−1) = qt1 = 1− e−1/θt (2)

Pr(dt = k|∆t−1) = e−(k−1)/θt − e−(k+1)/θt , k = 1, 2, . . . ,Mt.
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Since we can write Dt = θtεt, with εt exponentially distributed with parameter one,

we obtain the conditional expectation of Dt given dt = k as

E(Dt|dt = 0,∆t−1) = θt

·
1− 1

θt(e1/θt − 1)
¸

E(Dt|dt = k,∆t−1) = θtE

·
εt|εt ∈

µ
k − 1
θt

,
k + 1

θt

¶¸
(3)

= θt +
e1/θt(k − 1)− e−1/θt(k + 1)

e1/θt − e−1/θt , for k ≥ 1.

It may be shown that E(Dt|dt = k,∆t−1) ≤ k for k ≥ 1 and that E(Dt|dt = 0,∆t−1) ≤ 1
2 ,

i.e. both conditional expectations can be expected to be smaller than their corresponding

mid-interval values. Equality arises only when θt →∞.
In the conventional continuous duration framework advanced by Engle and Russell

(1998) the θt function is of the type:

θt = α0 + α1Dt−1 + . . .+ αqDt−q + β1θt−1 + . . .βpθt−p + xtπ

= ztψ, (4)

where xt is a vector of predetermined variables containing, e.g., past prices. Setting

ξt = Dt − θt in (4) enables us to rewrite the model on the alternative form

Dt = α0 + (α1 + β1)Dt−1 + . . . (αq + βq)Dt−q + βq+1Dt−q−1 + . . .+ βpDt−p (5)

+ξt − β1ξt−1 − . . .− βpξt−p + xtπ, for p ≥ q.

This is an ARMAX model in the continuous exponential duration variable. Obviously,

other speciÞcations are also feasible (e.g., Bauwens and Giot, 2001, ch. 3).

2.1 Estimators

We Þrst consider estimation that accounts for the discreteness in the conditional variable dt

to be explained. Later we extend the estimation setup by also considering the discreteness

in the lagged durations that serve as explanatory variables in the θt function.

The log-likelihood function for the discrete conditional variable of (2)-(4) takes the

form

lnL =
TX
t=r

ln(e−ηt(yt−1)/θt − e−(yt+1)/θt), (6)
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where r = max(p, q) + 1 and ηt = 0, for yt = 0, and ηt = 1, for yt ≥ 1. The associated
score vector can be expressed

∂ lnL

∂ψ
=

TX
t=r

z0t
(ztψ)

2

"
ηt(yt − 1)e−ηt(yt−1)(ztψ)−1 − (yt + 1)e−(yt+1)(ztψ)−1

e−ηt(yt−1)(ztψ)−1 − e−(yt+1)(ztψ)−1
#
.

Obviously, other duration densities such as Weibull or log-logistic could also have been

applied. In the absence of strong a priori arguments for a particular model one avenue

would be to specify an even wider class of densities such as the generalized gamma. The

Appendix gives expressions for the Weibull and Burr models, which also will be used in

the empirical study below.

For (4)-(5) lagged continuous Dt−i, i = 1, . . . , q, variables are assumed observed. Obvi-

ously, if durations are measured discretely Dt−i are not observed but the dt−i, i = 1, . . . , q,

are. A consequence of using the discrete dt−i, i = 1, . . . , q, is that measurement errors are

introduced. These then imply that the ML estimator is inconsistent.

Consider as a simple example of this inconsistency an underlying exponentially dis-

tributed variable and observations falling into either of the two intervals [0, 1] and (1,∞)
with the indicator variable dt = 1 for the latter interval. Let θt = αDt−1 in the true case

and θt = αdt−1 in the assumed case. The score for the assumed model is

∂ lnL

∂α
=

TX
t=2

dt − e−1/(αdt−1)
α2dt−1

£
1− e−1/(αdt−1)¤ ,

with dt = 0 or dt = 1. As E(dt|∆t−1) = Pr(dt = 1|∆t−1) = exp(−1/(αDt−1)), a Þrst order
expansion of the score ∂ lnL/∂�α around the true parameter value and manipulation shows

that the bias depends on Dt−1−dt−1. As this difference can be expected to be larger than
zero, the ML estimator �α can be expected to be too large, or alternatively the estimated

mean can be expected to be too small.

The ML estimator is consistent and asymptotically normal when α1 = α2 = . . . =

αq = 0 (no measurement errors as dt−i, i = 1, . . . , q, are not included in θt) and the

β1, . . . ,βp parameters are such that the {Dt} sequence is stationary. An early proof of
the asymptotic results for a scalar case is due to Kulldorff (1961), who also studied the loss

in efficiency that results from discretizing the time scale. Engle and Russell (1998) consider

the case of explanatory variables, continuous durations and the QML estimator. Given

a correctly speciÞed stationary model the QML estimator can be shown to be consistent

and asymptotically normal.
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The EM-algorithm (Dempster, Laird and Rubin, 1987) provides a general framework

for dealing with aspects of the limited information in the {dt} sequence that we have in this
case. If we take the lagged dt−i variables as is and focus only on the grouped dt indicator,

we can easily extend the constant parameter and grouped exponential model of Little

and Rubin (1987, ch. 11). The M-step maximizes the conditional expectation of the log-

likelihood function for Dt given dt with respect to ψ, i.e. Q(ψ, �ψ) = E�ψ [lnL(D)|d,∆] =PT
t=r

h
− lnztψ −E�ψ(Dt|dt,∆t−1)/ztψ

i
. The required conditional expectation is given

in (3) and should be evaluated at �ψ (the E-step). The E and M steps are iterated until

convergence. Note that the M-step uses the continuous exponential variable log-likelihood

function and should therefore be computationally straightforward. The score vector is

∂Q/∂ψ =
PT
t=r z

0
t

h
E�ψ(Dt|dt,∆t−1)− ztψ

i
/(ztψ)

2 and the Hessian is ∂2Q/∂ψ∂ψ0 =PT
t=r z

0
tzt/(ztψ)

2.

Consider next an EM-algorithm that attempts to account also for the presence of dt−i

when the true Dt−i would have been preferred in θt. Little and Rubin (1987, ch. 8)

consider a problem of missing observations in a Gaussian AR(1) model, but there appears

to be no reported research on the type of problem we have in mind. Recall that the

density is a conditional one so that conditioning on past dt−i and not on future dt+j appears

reasonable. Then Q(ψ, �ψ) =
PT
t=r

h
−E�ψ(ln ztψ|d̄t,∆t−1)−E�ψ(Dt/ztψ|d̄t,∆t−1)

i
, where

d̄t = (d1, . . . , dt). This expression is a difficult one to use as it involves taking expectations

of past Dt−i with respect to more recent dt, because it involves nonlinearities, and because

different time periods are interwoven in the Þnal expectation expression. Therefore, no

attempt is made at obtaining an exact EM-algorithm in this paper.

An ad hoc EM-algorithm could use E�ψ(Dt|dt,∆t−1) for all t and hence also for those
lags that are included in the zt vector. The performance of this estimator is studied by

Monte Carlo simulation in the next section and also used empirically.

The simulated maximum likelihood (SML) estimator (Gourieroux and Monfort, 1991)

offers an interesting approach to coping with the discreteness of the data. Unfortunately,

the results of Cappé et al. (2002) suggest that the SML estimator may be a very time

demanding exercise as the number of replications should increase with the number of

observations. For high frequency data the sample size is usually large. Note also that the

current context differs from the dynamic limited dependent variable model considered by,

e.g., Lee (1997).
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An obvious way of attempting to avoid the bias arising from measurement errors in

lagged variables would be to specify the joint distribution for {∆t}. It would then be
possible to avoid the measurement error problem by accounting for the discretization

for all t. Unfortunately, such modelling would also be subject to even larger risks of

distributional misspeciÞcation as multivariate distributions can come in many alternative

shapes. Computationally it is potentially a difficult problem. Closely related to this

idea and more directly focusing on the discrete data would be a direct speciÞcation of an

inhomogeneous Markov chain with transition probabilities depending, e.g., on xt.

The geometric distribution is the discrete time equivalent of the exponential distribu-

tion and with a conditional interpretation the lagged dt−i presents no problem. When data

is genuinely continuous this can at most be regarded as an approximation. The likelihood

function for a mean µt and variance µt(1+µt) geometric distribution is (e.g., Cameron and

Trivedi, 1998) L =
QT
t=r µ

dt
t (1 + µt)

−1−dt . For time invariant µ the maximum likelihood

estimator is of the explicit form; �µ =
PT
t=1 dt/T and V (�µ) = µ(1+µ)/T . It can be demon-

strated that the estimator is biased and inconsistent when data is generated according to

a continuous exponential model. To specify a dynamic model we set the conditional mean

µt = θt = ztψ to obtain the score vector ∂ lnL/∂ψ =
PT
t=r z

0
t [dt − ztψ] / [ztψ(1 + ztψ)].

The covariance matrix of the estimator is estimated by the inverse of the information

matrix
PT
t=r z

0
tzt/ [ztψ(1 + ztψ)] and evaluated at estimates.

3. Monte Carlo Study

In this section we study the properties of the estimators for the various model versions

when data are artiÞcially generated according to conditional exponential and Weibull

models.

We specify the conditional mean function that is used in generating the underlying Dt

data as

θt = α0 + α1Dt−1 + β1θt−1.

Engle and Russell (1998) give the following moment results for the exponential model

E(Dt) =
α0

1− α1 − β1
V (Dt) =

1− β21 − 2α1β1
1− β21 − 2α1β1 − 2α21

×E2(Dt).
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These results can be obtained by substituting θt−1εt−1 for Dt−1 with εt−1 exponentially

distributed with parameter one. From the variance expression it follows that the param-

eters should satisfy 2α21 + β
2
1 + 2α1β1 < 1 and from the mean expression they should

also satisfy α + β < 1. In the experiments with Weibull distributed durations we em-

ploy standardization to obtain the mean and variance of the exponential model, cf. the

Appendix.

The study uses α1 = 0.2, 0.3 and 0.4, β1 = 0.15, 0.2 and 0.25, and α0 = 2.5, 5 and

10, to give mean durations in the range 3.8 − 28.6 seconds with variances in the range
4.2− 50.5. For the Weibull model we use γ = 0.8, which corresponds to negative duration
dependence. The time series length is set at T = 5 000 and 50 000. The T = 5 000 case

corresponds to a short time series length for frequently traded stocks, and T = 50 000 is

used only for the shortest durations (α0 = 2.5) and exponential data. In each design cell

1000 replications are generated starting from the same initial seed. In generating the series

an initial part of 100 observations is dropped. Data are next discretized in accordance

with the discussion in Section 2. The results are reported in terms of bias and mean square

error (MSE) measures in Figures 2-3 and in Tables A1-A5 of the Appendix. We conÞne

the presentation of results mainly to the α1 and β1 parameters and the exponential model

for T = 5 000.

The following models and estimation algorithms are used: (i) the continuous time

exponential model (indicated by C) serves as a base case and is estimated by ML and a

scoring algorithm. All other data sets are based on discrete duration {dt} sequences. (ii)
The same ML algorithm as in (i) is used with discrete data (indicated by D). Note that

for dt = 0 we use dt = 0.5 instead. This corresponds to the mid-interval value as for other

dt-values. (iii) the grouped data ML estimator with dt−1 in the θt function is estimated by

a BHHH algorithm (indicated by G); (iv) the EM-algorithm with �Dt replacing Dt for all t

is estimated by alternating between a ML and an E-step (indicated by EM). Hence, even if

data is generated as Weibull distributed the employed density underlying the estimators is

throughout the exponential. Note that all estimators are conditional ones, as estimation is

throughout conditional on initial observations. The number of iterations is limited to 100

and true parameter values are used to initialize iterations. All computations are performed

using Fortran code on a 1.9 GHz Laptop.

The biases of the estimators of α1 and β1 are displayed in Figure 2 for T = 5 000
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Figure 2: Biases for the estimators of α1 and β1 (T = 5 000 and 1000 replications;

Solid line indicates continuous duration ML estimator (C), dotted line discrete data with

the continuous duration ML estimator (D), dashed line indicates the grouped data ML

estimator (G) and the dot-dashed line the EM-algorithm (EM)).
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Figure 3: MSEs for the estimators of α1 and β1 (T = 5 000 and 1000 replications;

Solid line indicates continuous duration ML estimator (C), dotted line discrete data with

the continuous duration ML estimator (D), dashed line indicates the grouped data ML

estimator (G) and the dot-dashed line the EM-algorithm (EM)).
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and exponential data. It is quite obvious from the patterns for both parameters that the

ML estimator based on continuous data has small bias. All other estimators are based

on discretized data and manifest some bias for short durations, while bias is much less

of an issue for longer durations. The largest bias for α1 = .2 and the shortest duration

of 3.8 seconds is noted for the grouped data ML estimator and amounts to 6 percent.

For the EM-algorithm the corresponding bias is less than 3 percent. For both parameters

there is a clear-cut ranking of the estimators, in particular for the short mean durations.

The biases of the EM-algorithm are smaller than the biases of the discretized data ML

and grouped data ML estimators. It appears that the grouped data ML estimator has

the weakest performance. As the EM-algorithm in this particular case is rather fast to

calculate it is our tentative choice of a best estimator. Table A1 contains the detailed

biases (all multiplied by 100) for the parameter estimators. For T = 50 000 corresponding

results are given in Table A3 for short mean durations (α0 = 2.5). The results reiterate

the main conclusions derived from Figure 2. It is quite apparent that all estimators but

the continuous data ML estimator (C) have a bias and that the EM-algorithm comes out

as the least biased estimator for discretized data. For Weibull data, cf. Table A4, the

internal ranking between estimators remain relatively unaltered.

The MSE results of the α1 and β1 estimators are exhibited in Figure 3 for T = 5 000

and the exponential data. When it comes to the MSEs for β1 the most apparent feature

is their striking similarity across mean durations. For this parameter the MSE is then

completely dominated by the variance component. For α1 there is some variation for short

durations and for the long ones (see also Table A2). The MSE of the EM-algorithm is not

much different from those of the continuous duration ML estimator based on discretized

data and the grouped data ML estimator. Among the latter two, the grouped data ML

estimator has the weaker performance for short mean durations. For T = 50 000 there is

an expected drop in MSEs due to sample size, but the ranking between estimators remain

unaltered. As expected the MSEs of the base case ML estimator for the exponential model

(C) are the smallest in most cases, and also for the Weibull generated data, cf. Table A5.

In summary, among the estimators accounting for discretized data model the EM-

algorithm is the preferred estimator in terms of bias. With respect to MSE it is not worse

than the two competitors, though differences are quite small. No estimator manages to

completely avoid bias for short mean durations.
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4. Empirical Results

4.1 Data and Descriptives

Empirical results are reported for 15 days of trading (July 2, 2002 � July 22, 2002) in

Ericsson B at the order driven Stockholmsbörsen stock exchange in Stockholm. The data

were downloaded from the Ecovison system and processed further by the authors. The

number of observed durations or the time series length is, after some reduction due to day

changes, 57 735. On average there are 3849 durations per day. Figure 4 gives a histogram

of the durations. The estimated average of the integer-valued duration is 7.4 seconds with

a standard deviation of 11.2 seconds. The average varies between 2.9 to 13.5 seconds over

the 15 days. About 79 percent of the durations are 10 seconds or shorter and the longest

duration is 403 seconds. To give an indication of the trading volume, the number of traded

stocks during the Þrst day of the sample period is 12 596 496 with a closing price of 14.90

SEK. The trading volume in the major summer vacation month of July is usually smaller

than during other months.

Table 1 reports the one step transitions (in row percent) between successive durations.

The matrix is asymmetric so that independently of the size of dt−1 the next duration dt

is most likely shorter. For instance, given dt−1 = 3, 52.7 percent of the durations at t

can be expected to be shorter than or equal to dt = 3. Figure 5 gives the autocorrelation

function for the time series of successive durations. The autocorrelations are quite small

but the function decreases only slowly. Note that all autocorrelations are positive. The

partial autocorrelations decrease rather quickly and are approximately zero after 5-6 lags.

The patterns of Table 1, Figure 5 and the partial autocorrelation function indicate that

the model should be able to capture low order both autoregressive and moving average

effects.

Figure 6 exhibits the seasonal pattern across the hours of the day. There appears

to be a weakly increasing pattern so that trading is slightly less frequent (longer dura-

tions) towards the end of the trading day. There appears to be no strong reasons for

deseasonalizing the series as done in some previous studies.

For a pure time series analytical approach (i.e. π = 0 in (4)) a reasonable starting

point is to search for a model with p ≤ 3 and q ≤ 3. In addition, in the Þnal models

we include as explanatory variables the price (mean 14.61, standard deviation 1.90), the

11
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Figure 4: Histogram of discrete durations dt (T = 57 735, the one percent of durations

exceeding 50 seconds is excluded).

Table 1: Transition matrix between successive durations (only durations and their lags

shorter than 10 seconds are included in the table; in percent).

dt

dt−1 0 1 2 3 4 5 6 7 8 9 10

0 16.8 21.4 11.6 8.5 6.5 5.7 4.1 3.5 2.6 2.2 1.8

1 18.6 19.5 11.9 9.1 7.3 5.5 4.5 3.3 3.0 2.1 1.9

2 14.9 18.0 12.6 9.7 7.6 6.3 4.8 3.5 2.9 2.4 2.2

3 13.8 17.3 12.3 9.3 7.5 5.7 4.7 3.7 3.0 2.5 2.2

4 12.6 14.8 11.6 9.3 7.8 6.9 4.9 3.9 3.3 2.9 2.1

5 11.6 14.5 12.3 10.6 7.7 5.6 4.3 4.1 3.2 3.3 1.9

6 12.2 13.8 10.0 8.7 7.1 6.1 5.0 4.5 3.3 3.0 2.3

7 12.3 13.6 9.3 7.9 7.9 6.1 4.9 4.5 3.7 3.1 3.0

8 11.8 12.9 9.7 8.4 7.3 6.3 5.5 4.3 4.0 3.4 2.5

9 11.9 12.1 8.7 7.8 7.4 6.4 5.3 4.2 4.0 2.8 2.8

10 11.5 12.0 10.0 8.5 7.2 6.6 4.0 3.1 4.2 2.9 2.7
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spread (0.10, 0.02) and the number of traded stocks (2134.5, 1.48·106) ending the previous
duration. Including the Þrst two variables as changes instead of as levels was rendered

empirical support, see below. For example, the price part of the model, π1pt−1 + π2pt−2,

was used and empirically we found �π1 ≈ −�π2. This suggests the use of a restricted

π(pt−1 − pt−2) = π∇pt−1 speciÞcation, i.e. in terms of a change.

4.2 Estimation Results

To estimate the parameters we assume three parametric density speciÞcations that have

been used previously � the exponential, the Weibull and the Burr (see the Appendix for

a brief account of the latter two distributions). The Weibull contains the exponential

model as a special case. The Burr model is more ßexible than Weibull in that it has

more parameters and then a more ßexible hazard function. The Burr model does not

nest neither the exponential nor the Weibull models, so that straightforward use of, e.g.,

likelihood ratio tests for model selection is ruled out. We employ two versions of the

EM-algorithm for the exponential model.

The continuous exponential model served as a tool for determining the model speciÞ-

cation.1 The best model has R2 = 0.1. There is some remaining serial correlation in all

models to be reported and this could not be eliminated, cf. Figure 5 for the autocorrela-

tion function corresponding to column one of Table 2.2 Note that no serial correlations

are determined for the discretized models. No serial correlation remains in the squared

residuals, except for in the Burr model and for the model of the Þnal column of Table 2.

Individual correlations are, however, quite small and the Ljung-Box statistic is obviously

inßuenced by the large sample size.

The estimation results are presented in Table 2-4. The parameter estimates are

throughout almost exclusively of the same sign, roughly of similar sizes and when sig-

niÞcant this happens across models and estimators. Note that there are more lags in these

models than in most previous models.

Table 2 reports results based on an assumed, continuous variable exponential model.

It is found that the estimated models of this table (and other tables) satisfy the station-

1In this case and whenever continuous variable methods are employed 0 is replaced by 0.5 seconds to

reßect mid-interval-value in the same way as for longer durations.
2The residual is deÞned as rt = (dt − E(Dt|∆t−1)/V 1/2(Dt|∆t−1), where E(.) and V (.) are different

for the different distributions. The squared residual is r2t .
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Table 2: Maximum likelihood estimates for alternative speciÞcations of the continuous

exponential model.

Variable Coeff s.e. Coeff s.e. Coeff s.e. Coeff s.e.

dt−1 0.0378 0.0029 0.0381 0.0029 0.0408 0.0030 0.0356 0.0030

θt−1 0.8962 0.0603 0.9162 0.0756 0.8712 0.0524 0.9905 0.0149

θt−2 -0.2634 0.0803 -0.3072 0.0966 -0.3350 0.0697 -0.3120 0.0185

θt−3 0.3282 0.0564 0.3506 0.0645 0.4818 0.0041 0.2834 0.0275

Price change 2.8274 0.3564 � 3.1143 0.3419 1.6284 0.2899

pt−1 � 0.4985 0.0090 � �

pt−2 � -0.4954 1.3161 � �

Spread change -1.7938 1.1494 -0.8952 0.8908 � 1.0475 1.0689

st−1 � � -1.0680 0.8481 �

st−2 � � 1.2123 1.3161 �

Volume 0.6266 2.6438 -0.7224 1.1746 0.8041 1.1797 �

vt−1 � � � 0.6973 0.0048

vt−2 � � � -0.6945 1.3161

Constant 0.0103 0.0354 -0.0250 0.1116 -0.0038 0.0935 0.0066 0.0531

LB100 235.4 233.1 234.9 382.5

LB2100 6.7 6.2 6.7 828.6

lnL -165860 -165860 -165859 -165743

Notes: Volume pertains to the previous transaction, while vtis the accumulated

(within the day) trading volume. Both are throughout devided by 10 000 000. LB100

is the Ljung-Box statistic of the standardized residual over 100 lags. LB2100

is the same statistic for squared residuals.
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Table 3: Parameter estimates for the exponential model.

ML-Continuous ML-Grouped EM-Grouped EM-full

Variable Coeff s.e. Coeff s.e. Coeff s.e. Coeff s.e.

dt−1 0.0378 0.0029 0.0380 0.0029 0.0379 0.0029 0.0403 0.0029

θt−1 0.8962 0.0603 0.9172 0.0548 0.8800 0.0532 0.8841 0.0530

θt−2 -0.2634 0.0803 -0.3036 0.0742 -0.2681 0.0712 -0.2693 0.0704

θt−3 0.3282 0.0564 0.3473 0.0522 0.3492 0.0507 0.3337 0.0496

Price change 2.8274 0.3564 2.9936 0.3350 3.1907 0.3330 3.1266 0.3303

Spread change -1.7938 1.1494 -3.0104 1.0554 -2.9918 1.0574 -1.4293 1.0879

Volume 0.6266 2.6438 0.8230 2.5724 0.9936 2.5879 0.7678 2.5562

Constant 0.0103 0.0354 0.0092 0.0317 0.0078 0.0311 0.0096 0.0314

LB100 235.4 � � �

LB2100 6.7 � � �

lnL -165860 -131050 -165096 -165105

Notes: All estimation results are obtained by Fortran coded programs. Repeated use is

made of a simplex algorithm and the outer product gradient is used for the covariance

matrix. EM-full is the EM-algorithm used in the Monte Carlo experiment. EM-Grouped

is the grouped data EM-algorithm estimator.

arity condition on the α and β parameters, albeit with a rather narrow margin. Initially

alternative lag structures (different p and q values) were tried. Table 2 also reports on

how explanatory variables should be included. There is strong support throughout for

utilizing change variables for the price and spread. If, e.g., the price follows a random

walk the change corresponds to the innovation or the unpredicted new information over

the previous duration. A positive price change leads to a longer duration. The effect of the

spread change is negative but not signiÞcant. A higher trading volume prolongs the next

duration but not signiÞcantly so. The Þnal column suggests that separate inclusion of vt−1

and vt−2 is preferable judging by the log-likelihood values. However, the serial correlation

properties speak against this speciÞcation. The change variables will be retained in all

further model estimations.

In Table 3 a comparison within the exponential model of using continuous or grouped

data is reported. There are no substantial differences between the ML estimators based

on the two data types. The two versions of the EM-algorithm are quite similar, too.
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Table 4: Maximum likelihood estimates for alternative model speciÞcations.

Weibull Burr

Continuous Grouped Continuous Grouped

Variable Coeff s.e. Coeff s.e. Coeff s.e. Coeff s.e.

dt−1 0.0393 0.0425 0.0437 0.0042 0.0386 0.0033 0.0418 0.0042

θt−1 0.8875 0.0678 0.7792 0.0698 0.9994 0.0629 0.9990 0.0771

θt−2 -0.2967 0.0979 -0.2748 0.0860 -0.5001 0.0848 -0.5159 0.1045

θt−3 0.3663 0.0629 0.4455 0.0631 0.4434 0.0589 0.4679 0.0709

Price change 3.0200 0.4241 3.1342 0.4640 2.9754 0.4057 2.5722 0.4725

Spread change -1.2306 1.3314 -1.1535 1.4182 -0.7020 1.0991 -0.5374 1.3905

Volume 0.6712 3.0271 0.2148 3.3013 -0.9633 2.2659 -0.0063 3.1934

Constant 0.0132 0.0425 0.0045 0.0470 0.0286 0.0405 0.0044 0.0426

γ 0.9130 0.0023 0.8054 0.0005 1.1263 0.0019 0.8286 0.0044

λ � � 0.3600 0.0083 0.0350 0.0032

LB100 229.7 � 201.3 �

LB2100 7.1 � 240.9 �

lnL -165409 -129178 -164497 -129152

Note: See Table 3 for explanations.

Given this result, arguments supportive of the conventional QML estimator even if data

are discretized are strengthened.

Table 4 studies this issue further; if the QML is to be useful we would expect no

large changes in parameter estimates even if the exponential model is not the �true� one.

The qualitative conclusions correspond to those of the exponential model, though sizes

of estimates are slightly different. The exponential model is nested within the Weibull

model and the exponential can be rejected against the Weibull model (�γ is signiÞcantly

smaller than one). The Weibull model is not nested within the more general Burr model,

though the γ and λ estimates of the latter model may indicate that the shape of the

Weibull hazard is not supported by data. The Weibull duration dependence parameter γ

is signiÞcantly smaller than one, which implies a decreasing hazard function and that the

exponential model can be rejected. In a similar way the form of the Burr hazard function

is an indication against the exponential model.

Figure 7 shows the Burr and Weibull hazard functions, when θ is replaced by the

17



Duration (s)

0 5 10 15 20

H
az

ar
d 

Fu
nc

tio
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Life table

Figure 7: Hazard functions based on grouped ML estimates of Table 4 and evaluated at

the sample mean of the duration variable, and a life table estimated hazard function.

sample mean and estimates from Table 4 are used for γ and λ. The hazard functions

are hardly distinguishable and decrease rapidly within the Þrst second, but are roughly

constant thereafter. Hence, these hazards differ the most from the life table estimate in

the (0,1) interval and discrimination between the two parametric models would obviously

be much strengthened is short and continuous duration data in the (0,1) interval were

available.

We also studied whether the response to news is symmetric in the sense that pos-

itive and negative news affect subsequent durations in the same way. The potentially

asymmetric response to news (the variables are constructed as ∇x+t = max(0,∇xt) and
∇x−t = min(0,∇xt)) is studied in terms of the price and spread changes within the frame-
work of the grouped data Weibull and Burr models. By likelihood ratio tests we Þnd no

evidence of asymmetric response to price changes and the two estimates for positive and

negative changes are quite similar. There are different responses to spread changes de-

pending on their signs, but not signiÞcantly so. Individually neither of the spread change

effects appear to have a signiÞcant effect.
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5. Conclusions

The paper has discussed the discrete nature of duration measures between transactions in

stocks and studied the consequences of this discretization of a continuous time scale.

Grouped maximum likelihood and EM-algorithm estimators were discussed. In the

small Monte Carlo study the EM-algorithm that accounts for the discrete nature of the

data both in the outcome and the lagged explanatory variables comes out as the best

estimator of the compared ones. In the empirical study the differences between estimators

are generally quite small, and the EM-algorithm and ML estimators based on discrete

data are not too different from ML based on grouped data and Weibull and Burr models.

When it comes to the effects of explanatory variables the study provided support

for using changes rather than levels to reßect news. There is throughout a signiÞcant

and positive effect of news about prices and a negative effect of a change in the spread.

The spread effect is not signiÞcant, however. A higher volume has an insigniÞcant but

prolonging effect in most cases. We could not Þnd statistically signiÞcant support for an

asymmetric response to news about spreads nor about prices. The log-likelihood function

value of the Burr is larger than for other models but the models are not nested. In

addition, the serial correlation properties of the exponential and Weibull models speak in

favor of these two models. A generalized gamma was also employed and provided a better

Þt to the data than both the exponential and Weibull models. A reason for not reporting

generalized gamma results is the numerical problems we faced in obtaining standard errors.
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Appendix

Weibull

Using the speciÞcation of Bauwens and Giot (2001, pp. 98-99) the Weibull model has

hazard function λ(D) = γDγ−1/θγ , which gives the integrated hazard function Λ(D) =

(D/θ)γ . From this follows the distribution function F (D) = 1 − exp(−Λ(D)), expected
value E(D) = θ Γ(1+γ−1) and variance V (D) = θ2

£
Γ(1 + 2γ−1)− Γ(1 + γ−1)¤. Random

durations can be generated according to D = θ [− ln(1− u)]γ−1 , where u is a uniform
[0, 1] random deviate. A standardization of D to get the moments of the exponential

model is obtained by D∗ = a−1/2(D − θb), where a = £
Γ(1 + 2γ−1)− Γ(1 + γ−1)¤ and

b = Γ(1 + γ−1)− a1/2.
Corresponding to the log-likelihood function in (6) we have

lnL =
TX
t=r

lt =
TX
t=r

ln [exp(−ηt [(dt − 1)/θt]γ)− exp(− [(dt + 1)/θt)]γ]

=
TX
t=r

ln [g1t − g2t] , (A.1)

where the Þnal step is notational. The derivatives for lt are

∂lt
∂γ

=
1

θγt

h
−ηt (dt − 1)γ ln

³
dt−1
θt

´i
g1t +

h
(dt + 1)

γ ln
³
dt+1
θt

´i
g2t

g1t − g2t
∂lt
∂θt

=
γ

θt

ηt

³
dt−1
θt

´γ
g1t −

³
dt+1
θt

´γ
g2t

g1t − g2t (A.2)

∂lt
∂ψ

=
∂lt
∂θt

· ∂θt
∂ψ

= z0t
∂lt
∂θt

.

The conditional expectations corresponding to those in (3) and required for EM-algorithms

are of the form

E(Dt|dt = 0,∆t−1) = c
P (1 + γ−1, 1/θγt )
1− e−1/θt (A.3)

E(Dt|dt = k,∆t−1) = c
P
h
1 + γ−1,

³
k+1
θt

´γi− P h1 + γ−1,³k−1θt ´γi
e−(k−1)γ/θt − e−(k+1)γ/θt ,

where c = θtΓ(1 + γ
−1) and P (., .) is the incomplete gamma function (e.g., Press et al.,

1992, p. 209).
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Burr

Bauwens and Giot (2001, pp. 101-104) give the Burr density function:

f(D) =
γ

θ

µ
D

θ

¶γ−1 ·
1 + λ

µ
D

θ

¶γ¸−1−1/λ
(A.4)

with mean and variance

E(D) = θ
Γ(1 + γ−1)Γ(λ−1)
λ1+γ

−1
Γ(1 + λ−1)

, for γ/λ > 1

V (D) = θ2
1

λ1+2γ
−1
Γ(1 + λ−1)

(A.5)

×
·
Γ(1 + 2γ−1)Γ(λ−1 + 2γ−1)− Γ(1 + γ

−1)Γ(λ−1)
λΓ(1 + λ−1)

¸
, for γ/λ > 2.

The survival and hazard functions are

F̄ (D) =

·
1 + λ

µ
D

θ

¶γ¸−1/λ
= c−λ

−1

h(D) =
γ

θ

µ
D

θ

¶γ−1 ·
1 + λ

µ
D

θ

¶γ¸−1
. (A.6)

Using (A.4)-(A.6) it is then possible to obtain the log-likelihood function corresponding

to (6) and then to obtain ML estimates. The derivatives of F̄ (D) with respect to γ, θ

(and ψ) and λ make up the score vector and are given by

∂F̄ (D)

∂γ
= −

µ
D

θ

¶γ
ln

µ
D

θ

¶
c−λ

−1−1

∂F̄ (D)

∂θt
=

γ

θ

µ
D

θ

¶γ
c−λ

−1−1

∂F̄ (D)

∂ψ
=

∂F̄ (D)

∂θt
· ∂θt
∂ψ

= z0t
∂F̄ (D)

∂θt
(A.7)

∂F̄ (D)

∂λ
=

1

λ

·
λ−1 ln(c)− c−1

µ
D

θ

¶γ¸
c−λ

−1
.
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Table A1: Bias measures (times 100) of estimators for data generated by an exponential

model in Monte Carlo experiment, T = 5000.

True α0 α1 β1

α0 α1 β1 C D G EM C D G EM C D G EM

2.5 0.2 0.15 1.50 3.17 -3.02 -2.43 -0.03 -0.90 -1.18 -0.51 -0.34 1.12 1.52 0.82

2.5 0.2 0.20 1.82 2.65 -2.70 -2.15 -0.03 -0.77 -1.00 �0.43 -0.38 0.97 1.28 0.69

2.5 0.2 0.25 2.20 2.42 -2.41 -1.97 -0.02 -0.67 -0.85 -0.40 -0.43 0.78 1.10 0.63

2.5 0.3 0.15 1.10 2.83 -1.54 -1.52 -0.02 -0.82 -1.30 -0.36 -0.20 0.85 1.24 0.48

2.5 0.3 0.20 1.31 2.33 -1.54 -1.49 -0.02 -0.70 -1.09 -0.31 -0.22 0.73 1.08 0.45

2.5 0.3 0.25 1.54 2.05 -1.32 -1.00 -0.02 -0.58 -0.89 -0.25 -0.24 0.57 0.88 0.31

2.5 0.4 0.15 0.97 2.54 -0.12 -1.04 -0.01 -0.71 -1.37 -0.23 -0.14 0.61 1.01 0.29

2.5 0.4 0.20 1.13 2.08 -0.15 -0.84 -0.01 -0.59 -1.13 -0.18 -0.15 0.51 0.85 0.23

2.5 0.4 0.25 1.30 1.71 -0.14 -0.51 -0.01 -0.47 -0.88 -0.15 -0.16 0.40 0.67 0.16

5 0.2 0.15 3.15 3.64 0.70 1.64 -0.03 -0.28 -0.34 -0.17 -0.35 0.09 0.15 -0.11

5 0.2 0.20 3.88 3.64 1.18 2.50 -0.03 -0.23 -0.30 -0.14 -0.41 0.03 0.08 -0.21

5 0.2 0.25 4.76 3.49 2.24 3.36 -0.02 -0.21 -0.26 -0.13 -0.48 0.01 -0.04 -0.27

5 0.3 0.15 2.28 2.90 0.80 1.29 -0.02 -0.25 -0.38 -0.13 -0.21 0.12 0.20 -0.05

5 0.3 0.20 2.73 2.77 1.20 1.90 -0.02 -0.22 -0.31 -0.11 -0.23 0.08 0.12 -0.10

5 0.3 0.25 3.27 2.82 1.62 2.81 -0.02 -0.19 -0.26 -0.10 -0.26 0.04 0.06 -0.17

5 0.4 0.15 2.01 2.75 1.42 1.62 -0.02 -0.22 -0.38 -0.08 -0.15 0.07 0.16 -0.08

5 0.4 0.20 2.35 2.45 1.54 2.07 -0.02 -0.18 -0.32 -0.07 -0.16 0.06 0.13 -0.11

5 0.4 0.25 2.76 2.56 1.96 3.07 -0.02 -0.15 -0.25 -0.05 -0.16 0.02 0.06 -0.17

10 0.2 0.15 6.48 5.99 5.39 7.33 -0.03 -0.10 -0.11 -0.07 -0.37 -0.19 -0.25 -0.40

10 0.2 0.20 8.04 7.19 6.83 9.84 -0.02 -0.08 -0.10 -0.06 -0.43 -0.27 -0.31 -0.52

10 0.2 0.25 9.95 8.31 9.84 12.62 -0.02 -0.07 -0.06 -0.06 -0.50 -0.32 -0.38 -0.63

10 0.3 0.15 4.66 4.78 4.06 6.05 -0.02 -0.09 -0.11 -0.06 -0.21 -0.11 -0.12 -0.27

10 0.3 0.20 5.64 5.37 4.75 7.80 -0.02 -0.07 -0.10 -0.05 -0.24 -0.14 -0.14 -0.33

10 0.3 0.25 6.81 6.14 5.87 10.11 -0.02 -0.07 -0.08 -0.04 -0.27 -0.17 -0.18 -0.40

10 0.4 0.15 4.27 4.50 3.73 5.98 -0.04 -0.09 -0.11 -0.03 -0.15 -0.08 -0.07 -0.23

10 0.4 0.20 5.36 5.25 4.34 7.70 -0.06 -0.10 -0.10 -0.03 -0.16 -0.09 -0.08 -0.27

10 0.4 0.25 7.18 6.73 5.09 10.03 -0.11 -0.15 -0.07 -0.02 -0.17 -0.11 -0.11 -0.33

22



Table A2: MSE measures (times 100) of estimators in Monte Carlo experiment, T = 5000.

Data are generated as exponentially distributed.

True α0 α1 β1

α0 α1 β1 C D G EM C D G EM C D G EM

2.5 0.2 0.15 6.38 7.26 6.89 7.01 0.03 0.04 0.04 0.04 0.48 0.54 0.54 0.54

2.5 0.2 0.20 7.05 7.79 7.33 7.57 0.03 0.04 0.04 0.03 0.47 0.51 0.50 0.51

2.5 0.2 0.25 7.77 8.29 7.57 8.15 0.03 0.04 0.04 0.03 0.45 0.47 0.45 0.48

2.5 0.3 0.15 3.49 3.83 3.62 3.70 0.04 0.04 0.05 0.04 0.21 0.22 0.23 0.22

2.5 0.3 0.20 3.87 4.09 3.84 4.05 0.04 0.04 0.05 0.04 0.20 0.21 0.21 0.21

2.5 0.3 0.25 4.28 4.47 4.07 4.44 0.04 0.04 0.04 0.04 0.19 0.20 0.19 0.20

2.5 0.4 0.15 2.43 2.60 2.48 2.57 0.04 0.05 0.06 0.04 0.11 0.12 0.12 0.12

2.5 0.4 0.20 2.72 2.86 2.67 2.79 0.04 0.05 0.05 0.04 0.11 0.12 0.11 0.11

2.5 0.4 0.25 3.04 3.14 2.87 3.09 0.04 0.04 0.05 0.04 0.10 0.11 0.10 0.11

5 0.2 0.15 25.51 26.38 25.92 26.03 0.03 0.03 0.03 0.03 0.48 0.49 0.49 0.49

5 0.2 0.20 28.19 29.05 28.49 28.76 0.03 0.03 0.03 0.03 0.47 0.48 0.47 0.48

5 0.2 0.25 31.05 31.84 31.46 31.70 0.03 0.03 0.03 0.03 0.45 0.46 0.46 0.46

5 0.3 0.15 13.95 14.27 14.17 14.17 0.04 0.04 0.04 0.04 0.21 0.21 0.21 0.21

5 0.3 0.20 15.48 15.79 15.55 15.76 0.04 0.04 0.04 0.04 0.20 0.20 0.20 0.21

5 0.3 0.25 17.12 17.32 17.24 17.42 0.04 0.04 0.04 0.04 0.19 0.20 0.20 0.20

5 0.4 0.15 9.73 9.91 9.83 9.89 0.04 0.04 0.04 0.04 0.11 0.11 0.11 0.11

5 0.4 0.20 10.91 11.03 11.00 11.08 0.04 0.04 0.04 0.04 0.11 0.11 0.11 0.11

5 0.4 0.25 12.23 12.29 12.15 12.44 0.04 0.04 0.04 0.04 0.10 0.10 0.10 0.11

10 0.2 0.15 101.95 103.00 102.42 103.02 0.03 0.03 0.03 0.03 0.48 0.48 0.48 0.48

10 0.2 0.20 112.68 113.32 113.34 113.87 0.03 0.03 0.03 0.03 0.47 0.47 0.47 0.47

10 0.2 0.25 124.16 125.31 113.13 126.74 0.03 0.03 0.03 0.03 0.45 0.45 0.44 0.45

10 0.3 0.15 55.77 56.23 55.78 56.68 0.04 0.04 0.04 0.04 0.21 0.21 0.21 0.21

10 0.3 0.20 61.90 62.16 61.79 63.08 0.04 0.04 0.04 0.04 0.20 0.20 0.20 0.20

10 0.3 0.25 68.54 68.50 68.38 70.20 0.04 0.04 0.04 0.04 0.19 0.19 0.19 0.20

10 0.4 0.15 39.38 39.53 38.95 39.69 0.04 0.04 0.04 0.04 0.11 0.11 0.11 0.11

10 0.4 0.20 44.84 45.05 43.67 45.04 0.05 0.05 0.04 0.04 0.11 0.11 0.11 0.11

10 0.4 0.25 52.01 52.18 48.62 51.23 0.05 0.05 0.04 0.04 0.11 0.11 0.10 0.11
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Table A3: Bias and MSE (times 100) sof estimators for the exponential model with α0 =

2.5, T = 50000.

True α0 α1 β1

α1 β1 C D G EM C D G EM C D G EM

Bias

0.2 0.15 -0.15 1.36 -3.73 -3.99 0.02 -0.84 -0.57 -0.44 0.02 1.50 1.39 1.13

0.2 0.20 -0.13 0.56 -3.79 -4.14 0.02 -0.72 -0.48 -0.38 0.02 1.39 1.26 1.10

0.2 0.25 -0.10 -0.15 -3.88 -4.14 0.02 -0.61 -0.41 -0.32 0.01 1.27 1.14 1.02

0.3 0.15 -0.14 1.60 -3.47 -2.86 0.02 -0.77 -0.47 -0.30 0.02 1.05 0.99 0.70

0.3 0.20 -0.12 0.86 -3.48 -2.94 0.02 -0.65 0.39 -0.26 0.01 0.95 0.88 0.67

0.3 0.25 -0.09 0.31 -3.36 -2.78 0.02 -0.53 -0.31 -0.21 0.00 0.83 0.74 0.58

0.4 0.15 -0.12 1.41 -3.46 -2.20 0.02 -0.67 -0.37 -0.19 0.01 0.76 0.72 0.45

0.4 0.20 -0.10 0.79 -3.37 -2.17 0.02 -0.55 -0.29 -0.16 0.00 0.66 0.61 0.40

0.4 0.25 -0.07 0.32 -3.24 -2.06 0.02 -0.43 -0.22 -0.12 0.00 0.55 0.50 0.34

MSE

0.2 0.15 0.64 0.73 0.83 0.85 0.00 0.01 0.01 0.01 0.05 0.08 0.07 0.07

0.2 0.20 0.71 0.79 0.89 0.93 0.00 0.01 0.01 0.00 0.05 0.07 0.07 0.06

0.2 0.25 0.79 0.86 0.93 1.00 0.00 0.01 0.01 0.00 0.05 0.07 0.06 0.06

0.3 0.15 0.35 0.40 0.48 0.45 0.00 0.01 0.01 0.00 0.02 0.03 0.03 0.03

0.3 0.20 0.39 0.42 0.51 0.50 0.00 0.01 0.01 0.00 0.02 0.03 0.03 0.03

0.3 0.25 0.43 0.46 0.53 0.53 0.00 0.01 0.00 0.00 0.02 0.03 0.03 0.02

0.4 0.15 0.24 0.28 0.37 0.30 0.00 0.01 0.01 0.00 0.01 0.02 0.02 0.01

0.4 0.20 0.27 0.29 0.38 0.33 0.00 0.01 0.01 0.00 0.01 0.02 0.01 0.01

0.4 0.25 0.31 0.32 0.40 0.36 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01
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Table A4: Bias measures (times 100) of estimators for data generated by a Weibull model

in Monte Carlo experiment, T = 5000.

True α0 α1 β1

α0 α1 β1 C D G EM C D G EM C D G EM

2.5 0.2 0.15 1.67 4.48 -1.52 -1.18 -0.04 -0.89 -1.23 -0.52 -0.37 0.90 1.35 0.65

2.5 0.2 0.20 1.97 3.65 -1.57 -1.15 -0.04 -0.80 -1.08 -0.48 -0.41 0.84 1.22 0.60

2.5 0.2 0.25 2.33 3.24 -1.39 -1.04 -0.04 -0.69 -0.91 -0.44 -0.45 0.68 1.00 0.53

2.5 0.3 0.15 1.22 3.46 -0.31 -1.01 -0.04 -0.96 -1.46 -0.48 -0.21 0.89 1.19 0.54

2.5 0.3 0.20 1.42 2.91 -0.38 -1.01 -0.04 -0.81 -1.23 -0.47 -0.23 0.74 1.02 0.53

2.5 0.3 0.25 1.64 2.38 -0.43 -0.85 -0.03 -0.72 -1.02 -0.39 -0.25 0.66 0.84 0.42

2.5 0.4 0.15 1.07 2.87 1.11 -0.83 -0.03 -0.94 -1.63 -0.47 -0.15 0.76 0.99 0.48

2.5 0.4 0.20 1.22 2.21 0.76 -0.72 -0.03 -0.81 -1.34 -0.40 -0.16 0.67 0.85 0.40

2.5 0.4 0.25 1.37 1.80 0.56 -0.47 -0.02 -0.68 -1.09 -0.35 -0.16 0.55 0.70 0.32

5 0.2 0.15 3.44 4.36 0.93 1.59 -0.04 -0.33 -0.38 -0.24 -0.38 0.01 0.09 -0.08

5 0.2 0.20 4.11 4.31 1.45 2.20 -0.04 -0.29 -0.31 -0.22 -0.43 -0.04 -0.01 -0.14

5 0.2 0.25 4.92 4.78 1.90 3.27 -0.04 -0.26 -0.26 -0.20 -0.48 -0.13 -0.08 -0.25

5 0.3 0.15 2.49 3.30 1.04 1.25 -0.04 -0.37 -0.42 -0.25 -0.22 0.13 0.13 0.01

5 0.3 0.20 2.92 3.24 1.09 1.74 -0.04 -0.31 -0.36 -0.21 -0.24 0.08 0.10 -0.04

5 0.3 0.25 3.43 3.41 1.36 2.60 -0.03 -0.28 -0.28 -0.19 -0.26 0.03 0.03 -0.12

5 0.4 0.15 2.17 2.88 1.51 1.58 -0.03 -0.37 -0.46 -0.24 -0.16 0.15 0.13 0.01

5 0.4 0.20 2.49 2.88 1.41 2.08 -0.03 -0.31 -0.36 -0.20 -0.17 0.10 0.09 -0.03

5 0.4 0.25 2.84 2.92 1.48 2.87 -0.02 -0.26 -0.29 -0.18 -0.17 0.06 0.05 -0.08

10 0.2 0.15 6.99 6.93 4.74 6.96 -0.04 -0.12 -0.10 -0.11 -0.39 -0.29 -0.28 -0.40

10 0.2 0.20 8.44 8.14 5.89 8.97 -0.04 -0.11 -0.08 -0.10 -0.44 -0.35 -0.34 -0.49

10 0.2 0.25 10.17 9.70 7.21 11.56 -0.04 -0.10 -0.07 -0.08 -0.50 -0.41 -0.38 -0.59

10 0.3 0.15 5.05 5.28 3.51 5.54 -0.04 -0.13 -0.10 -0.11 -0.22 -0.15 -0.16 -0.23

10 0.3 0.20 5.96 5.79 4.21 7.30 -0.04 -0.12 -0.08 -0.09 -0.25 -0.16 -0.18 -0.30

10 0.3 0.25 7.02 6.73 4.59 9.15 -0.03 -0.10 -0.06 -0.08 -0.27 -0.20 -0.19 -0.36

10 0.4 0.15 4.39 4.66 2.75 5.79 -0.03 -0.13 -0.08 -0.11 -0.16 -0.08 -0.09 -0.19

10 0.4 0.20 5.06 5.18 3.19 7.36 -0.03 -0.11 -0.02 -0.09 -0.17 -0.10 -0.12 -0.24

10 0.4 0.25 5.79 5.81 3.44 9.21 -0.02 -0.09 0.01 -0.07 -0.18 -0.12 -0.12 -0.28
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Table A5: MSE measures (times 100) of estimators for data generated by a Weibull model

in Monte Carlo experiment, T = 5000.

True α0 α1 β1

α0 α1 β1 C D G EM C D G EM C D G EM

2.5 0.2 0.15 6.93 8.02 7.54 7.50 0.04 0.05 0.05 0.04 0.52 0.58 0.59 0.58

2.5 0.2 0.20 7.73 8.63 8.06 8.20 0.04 0.05 0.05 0.04 0.52 0.57 0.55 0.56

2.5 0.2 0.25 8.58 9.29 8.33 8.99 0.04 0.05 0.05 0.04 0.50 0.53 0.49 0.53

2.5 0.3 0.15 3.88 4.32 4.05 4.13 0.05 0.06 0.07 0.05 0.23 0.26 0.26 0.25

2.5 0.3 0.20 4.35 4.69 4.36 4.52 0.05 0.06 0.06 0.05 0.23 0.25 0.24 0.25

2.5 0.3 0.25 4.85 5.15 4.60 4.98 0.05 0.05 0.06 0.05 0.23 0.24 0.22 0.24

2.5 0.4 0.15 2.78 3.03 2.83 2.86 0.06 0.07 0.08 0.06 0.13 0.14 0.14 0.14

2.5 0.4 0.20 3.13 3.30 3.11 3.24 0.06 0.06 0.07 0.06 0.13 0.14 0.13 0.14

2.5 0.4 0.25 3.52 3.64 3.33 3.62 0.06 0.06 0.07 0.06 0.13 0.13 0.12 0.14

5 0.2 0.15 27.68 28.76 28.04 28.53 0.04 0.04 0.04 0.04 0.52 0.54 0.53 0.54

5 0.2 0.20 30.89 31.90 30.24 31.74 0.04 0.04 0.04 0.04 0.52 0.53 0.51 0.53

5 0.2 0.25 34.30 34.61 32.32 34.98 0.04 0.04 0.04 0.04 0.50 0.50 0.47 0.51

5 0.3 0.15 15.53 16.00 15.49 15.87 0.05 0.05 0.05 0.05 0.23 0.24 0.23 0.24

5 0.3 0.20 17.41 17.77 16.80 17.74 0.05 0.05 0.05 0.05 0.23 0.24 0.22 0.24

5 0.3 0.25 19.41 19.62 17.90 19.69 0.05 0.05 0.05 0.05 0.23 0.23 0.21 0.23

5 0.4 0.15 11.10 11.33 10.98 11.29 0.06 0.06 0.06 0.06 0.13 0.13 0.13 0.13

5 0.4 0.20 12.53 12.69 12.02 12.83 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13

5 0.4 0.25 14.09 14.21 13.07 14.46 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13

10 0.2 0.15 110.67 111.45 109.69 111.87 0.04 0.04 0.04 0.04 0.52 0.53 0.52 0.53

10 0.2 0.20 123.51 123.78 118.99 124.81 0.04 0.04 0.04 0.04 0.52 0.52 0.50 0.52

10 0.2 0.25 137.17 137.78 128.08 139.06 0.04 0.04 0.04 0.04 0.50 0.51 0.47 0.51

10 0.3 0.15 62.10 62.36 60.59 62.79 0.05 0.05 0.05 0.05 0.23 0.23 0.23 0.24

10 0.3 0.20 69.63 69.73 66.31 70.74 0.05 0.05 0.05 0.05 0.23 0.23 0.22 0.24

10 0.3 0.25 77.65 77.85 71.46 79.24 0.05 0.05 0.05 0.05 0.23 0.23 0.21 0.23

10 0.4 0.15 44.40 44.83 43.28 45.25 0.06 0.06 0.06 0.06 0.13 0.13 0.13 0.13

10 0.4 0.20 50.12 50.30 47.97 51.60 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13

10 0.4 0.25 56.36 56.54 52.61 58.76 0.06 0.06 0.06 0.06 0.13 0.13 0.12 0.13
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