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Abstract

In this paper, we introduce cost benefit rules for projects embedded in a stochastic optimal
growth framework. We model uncertainty in terms of Brownian motion and Ito integrals.
Taking the mathematical expectation of the project means that the Ito integrals vanish, and

we end up with a cost benefit rule that closely resembles its deterministic counterpart.
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1. Introduction

A result in optima control theory presented more than two decades ago® has had a
considerable influence on the study of cost benefit analysis in deterministic dynamic
continuous time models. The basic result — sometimes referred to as the ‘dynamic envelope
theorem’ — greatly simplifies the calculation of the value of a project. In its most basic form,
this result means that the value of a small project can be measured by differentiating the
present value Hamiltonian partially with respect to the relevant parameter and then integrating
over the planning horizon along the optimal path. This result follows because the indirect

effects of the parameter via control, state and costate variables vanish as a consequence of

" A research grant from FORMAS is gratefully acknowledged.
! See Sejerstad (1981). See also Seierstad and Sydsaeter (1987), Léonard (1987), Caputo (1990) and LaFrance
and Barney (1991).



optimization. More recently, a number of studies have tried to extend the analysis to apply in
imperfect market economies’, where the maximized Hamiltonian is not as well defined asit is

in the context of the planner models where the dynamic envelope theorem was originaly
applied.

In this paper, we introduce cost benefit rules for projects embedded in a stochastic optimal
growth framework. Such an extension of the literature is important from a theoretical point of
view in the sense that the methods used to solve stochastic optimal control problems differ
from their deterministic counterparts. It is also relevant because many aspects of behavior in
intertempora economies are related to uncertainty in a fundamental way. We will show how
optimization will add envelope properties that greatly reduce the measurement problem. More
specifically, since we model uncertainty in terms of Brownian motion and Ito integrals, taking
the mathematical expectation of the project means that the stochastic integrals vanish.
Therefore, except for the expectations operator, we are left with the corresponding
deterministic cost benefit rule.

The outline of the study is as follows. In Section 2, we present the model. Section 3 contains
the main results, whereas Section 4 exemplifies the back-of-a-lottery-ticket calculation
method in the context of a ssmple numerical framework.

2. TheModd

In this section, we introduce a Ramsey model with a stochastic pollution equation and a
pollution externality. The corresponding deterministic model is due to Brock (1977). The
stochastic components are population growth, which will influence the stochastic differential
equation for capital accumulation, and the assimilative capacity of the environment. The latter
means introducing a stochastic differential equation for the accumulation of pollution.
Although our model is specific in the sense of focusing on environmental aspects of optimal

growth, the results are easy to generalize to any stochastic optimization problem.

The value function reads

2 Cost benefit analysis of public projects in imperfectly competitive market economies are often applied to
environmental policy problems; see e.g. Aronsson et al. (1997) and Aronsson (1999).



U (0) = Eqf [ u(c(t), x(t))e " dt} (1)

where c(t)is consumption per capita and X(t)is the stock of pollution. In other words, in

comparison with the stochastic Ramsey problem analyzed by Merton (1975), we insert the

stock of pollution as an additional argument in the utility function.

Let F(L,K,G) be alinear homogeneous net production function (i.e. depreciation has been

accounted for), where L denotes the units of labor input, K the units of capital input and G the

units of energy input. The capital stock is assumed to evolve according to
K(t) = F(L(1),K(),G(1) - C(t) (2

where C is the aggregate consumption. Let k = K/L and g=G/L and then differentiate totally
with respect to time. By using linear homogeneity of the production function, it follows that

k(t) = f (k(t), g(1)) = nk(t) - c(t) )

in which f(k,g) is net output per capita and n the rate of population growth. It is assumed
that L(t) = L(0)exp(nt) with L(0) >0 and 0<n<1. Equation (3) isavariation of the Solow
neoclassical differential equation for the capital stock per capita under certainty. Note that
dL/dt =nL ordL =nLdt.

Suppose that the growth of the labor force is described by the geometric Brownian motion
dL =nLdt +o,Ldw, 4)

Equation (4) should be interpreted in the sense of Ito, and we assume that the Brownian
motion, w, =w,(t), is defined on some probability space. Intuitively, the increments, dw,,
should be thought of as normally distributed variables with mean zero and variance dt. An
important property of Brownian motion isthat w; (s) —w, (t) is independent of w,(t) for s>t.

The drift of the process in equation (4) is governed by the expected rate of labor growth per



unit of time, n. In other words, over a short interval of time, dt, the proportionate change of

the labor force, dL/L, is normally distributed with mean ndt and variance odt .

We are now ready to transform the uncertainty about the growth of the labor force into

uncertainty about the growth of the capital stock per capita, k= K/L. Define

k(t) =KT(° = (L, 1) (5)

and apply 1to’slemmato obtain

dk =[f (k(t), g(t)) —c(t) - (n— o7 )k(t)]dt — o, k(t)dw, (6)
k(0) =k,

In the same spirit, we assume that the stock of pollution evolves over time. The emissions at
each instant are related to the use of energy in production and possibly also dependent on the
stock itself. By simplifying and writing the emission production function as e(t) = g(t)x(t) , it
follows that g(t) is aso interpretable as the emission rate at time t. The stock of pollution

accumul ates according to the stochastic differential equation

dx = g(t)x(t)dt — o, x(t)dw, )
X(0) = x,

where y is the rate of depreciation, and w, is another stochastic variable that follows a
Brownian motion. Note also that of a process evolving according to a geometric Brownian

motion remains positive over time. Thismeansthat x(t) is positive.

To shorten the notations, let us define

[ _ | k()
y(t) = {g(t)} z(t) = {x(t)} (8)



As permissible controls, we choose the feedback controls y(t) = y(t, z(t)), where y(t)is a

deterministic control function. By substituting the control functions into the stochastic
differential equations (6) and (7), we obtain

() = {dk} _ {hl(y(t, K, X),k; g, n)}dt _ {Ulk }dw ©
dx h, (t, Kk, X) O, K

K,
ol

with self explanatory notation. We assume that an admissible control implies that the system
of stochastic differential equations has a unique solution as well as require that y(t) = 0.
Moreover, to avoid a nonessential solution, we introduce the time horizon condition

T =inf[t > 0|k(t) = 0] A o, and write the optimal value function as follows;

V(0,z,) = supJT' u(c(t), x(t))e %dt (10)

subject to equation system (9). From stochastic optimal control theory, we know that an
optimal control must satisfy a partial differential equation, which is called the Hamilton-
Jacobi-Bellman (HJB) equation. The generalized HJIB-equation can be written

_avg—i' D ¢ sup{u(c(t), X(t)e® + AV (t,2)} =0 0t, )0 D (11)

with the transversality conditions V(T,0,x) =0. The term A’ is a differential operator. To

define the differential operator, et us write equation system (9) in compact vector notation as

dz) =a’(t,z)dt — o’ (t, z)dw, (12



where the top index denotes that the process is driven by the control function, y(t), or afixed

vector, y . Define the matrix®

MY =o'(t,z,y)o’ (t,z,y) (13)

in which the prime symbol denotes transpose. The partial differential operator can now be

written

a 1 2 2
N —Zay(t Z)EJrZZZM” a;az (14)

i=1 j=1

with an obvious modification for a case when we are dealing with N stochastic differential

equations.

For the present case with two SDE’s, we can apply the differential operator to obtain

- — aptuewx@ye® + 202 n 62+ M 2
t v . Ox (15)
LLOVD) o, V(t,z)a s 62V(t -
28 ak? ! okax 2

By introducing explicit co-state variables for notational convenience, equation (15) can be

rewritten as

oV (t,s) apk ap apk
-——— =supH(t,z —

o IO t,zy,p,— %K ox )
ap, pr 6pk
ok ' dx = ox

(159)

= H"(t,k, x, p,—%

where H " isinterpretable as a maximized generalized present value ‘ Hamiltonian’, and

ov oV

P = (Py, Px) = (ak a)

3Here g” isa 2%1 vector.



is a vector of co-state variables in present value terms. Note that the co-state variables are

defined as partial derivatives of the optimal value function. In case the increments dw, and
dw, are independent, the multidimensional analogues of the co-state stochastic differential

equations have the following shape

oV oV

dp, =—-Hdt —Wogkdwl S pxaw,
(16)
Y, RY,
dp, =—H dt - Poe O, )%dw, —malkdw1

The derivation of the general form of the stochastic co-state differential equations can be
carried out in the following way. Each co-state variable is the derivative of the optimal value
function with respect to the corresponding state variable. By applying Ito’'s Lemma, the
resulting expression will contain aterm representing the cross derivative of the optimal value
function with respect to time and the state variable. We can then derive an expression for this
derivative by taking the first derivative of the HIB-equation with respect to the state variable
and again using Ito calculus. Substituting the resulting expression for the cross derivative into
the original co-state differential equation, one arrives at the result in equations (16) after some
cancellations. We supply the details in the Appendix. Note finally that the more general case
with N state variablesis a straight forward extension®.

3. Cost Benefit Rules

The form of the co-state equation contains the key to the shape of a cost benefit rule under
Brownian motion. Since a co-state variable measures the contribution to the value function of
amarginal increase in a state variable, we can use the concept of co-state variable to derive a
cost benefit rule. The trick is to introduce an artificial state variable in terms of the parameter
that describes the project. In the model set out above, the parameter y will be used as a
project that improves the assimilate capacity of the environment. Since y istime independent,
we can write its differential equation as dy =0, y(0) = y. This gives us three stochastic

differential equations, one of them being deterministic. We can, nevertheless, elicit a co-state

* The N-dimensional case can be easilly guessed by the reader.



variable, which is defined as a partial derivative of the optimal value function, i.e.

p, =0V /0y . We can then use the general form of the co-state equations (16) to write

0%V 0%V 0%V
dpy =-H E(%t +W0-3dw3 —a—}akUlkdwl _a—}aXUZ}/XdWZ (17)

However, g, =0 by assumption, and we can integrate equation (17) over the interval (t,t,)

to obtain

Y Y 492y
p, () = p,(®) = [ H,(0ds - | 2K T - | kT (18)

Since p,(T) =0 according to the tranversality condition, we can write the cost benefit rule as

T T

o oV oV
p, (t) = ! H(r)dr + ! wo—lkolwl + ! a_;axaz yxaw, (19)

Finally, taking expectations and using the fact that the second and third terms on the right

hand side of equation (19) are Ito-integrals, we have®
T
E.(p,) = E{[H(n)dn} (20)
t

which is a close analogue to the deterministic dynamic envelope theorem.

Project uncertainty can be introduced by specifying the differential equation for the project
state variable, i.e.

dy =odw;, y(0)=y (21)

® See e.g. Bjork (2000), pp 31-32. The reason is that the process is adapted, and that the increments are
independent.



With this extension, equation (19) will contain one more Ito-integral. In expectations, the
answer will be the same.

4. Exemplification: Back-of-a-lottery-ticket calculations

In this section, we want to exemplify the method developed in the previous section, i.e., that
the calculations of E,(p,) can be reduced to a back-of-alottery-ticket calculation through the

relation
.
E.(p,) =E{[H,(r)dr}
t
We consider the following, to some extent oversimplified, stochastic control problem:
V(t,X) =inf Et[j(xs2 +c2)e " ds|
t

where the underlying processis given by
dX, =c(X,)dt +gydw,, X, =x

Defining p, =9V /0y, we want to caculate E (p,) where the subindex t indicates that the

underlying process starts at time t. One can approach the problem in two ways, either
explicitly solve the stochastic optimal control problem and develop all expression explicitly
before carrying out the calculation, or use the method described above. The second approach

will imply less hard work.
We start with the first approach. The HIB-equation becomes

V(%)

av(t,x) 1 3V (t, x
> ( )+70.2 2 (2 )}

zinf{e™®(x* +c?)+c
c{ ( ) 0X 2 1)

Maximizing with respect to the control variable gives
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c:—}ep‘ aV(t,x)'
0X

Inserting the expression for the control variable into the HIB-equation, we obtain

2
0=e"x2 _leﬂ(GV(t,X))z + oV(t,x) +102y2 0 V(tz, X)}
4 0X ot 2 oX

By using separation of variables, so V(t,x) = e ”@(x) and ¢(x) = ax* +b, one may solve for
the parameters. If the control is only allowed to assume negative values we may conclude, by
referring to Theorem 11.2.2 in Oksendahl (2000), that we have found the unique solution to
the ssimplified stochastic control problem under consideration. In fact, the parameter a does

not depend on y . The optimal value function is given by

2,,2
V(t,x) = e ™ (x* +%)a

and the maximized present value ‘Hamiltonian’ becomes
H”=e?(x*(1-a%) +o?y?a)
Therefore,

2

i
P, =2e7 % ja= [H](n)dr
t

In this particular case, taking expectations makes no difference.
Let us now consider the back-of-a-lottery-ticket calculation. By definition,

_OV(t,x)

=H"(t, Xy, V,,V,
3 t,xy )
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Differentiation of H"(t,x,y,V,,V,,) With respect to y gives
H, =o’W, =2e"0%a
in which we have made use of the explicit solution. Therefore, by our result,
T 2
E.(p,) = Et{tj H(z)d1} = 26 %ya
Appendix: The shape of the SDE:sfor the co-state variables
We have defined

P =(P: Py) = V,V,)

Using Ito’sformulaon p, implies

D, ={Vie Vi #Viuh, + Vi 07K +V,, 02155 + 2V, 0,0 koo

-V, 0.k dw, =V, o, yxdw,

Since V,, =V,, it follows from equation (15a) that°®
=V =H +Vh +Vh, +%[kak0-12k2 V05 Y X* + N, 0,0,K4

which, if inserted into the SDE-equation for the co-state, yields the first part of equation
system (16). The co-state equation for x follows analogousdly.

The same procedure as above can be used in the N+1 state variable case, where the project is
thefirst state variable, to show that
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N+1

p.() = [ HI(Sds+ " [ Vi (%90, (x Saw,

where x is the vector of state variables, and dw, i.e. the Wiener increment of the i:th

stochastic process. In expectations taken at timet, this reduces to equation (20).
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