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ABSTRACT

In this paper we briefly review Bayesian and frequentist prediction
inference for time series, and then advocate the use of guaranteed-
content prediction intervals. These intervals are such that their
content (or coverage) is guaranteed with a given high probabil-
ity. They, thus, are more relevant for the observed time series at
hand than classical prediction intervals, whose content is guaran-
teed merely on average over hypothetical repetitions of the pre-
diction process. Guaranteed-content intervals should, therefore,
conciliate Bayesians and frequentists when no prior belief on the
parameterization is available. This type of prediction inference
has, however, been ignored in the time series context because of a
lack of results. This gap is filled by deriving asymptotic results for
a general family of autoregressive models, thereby extending ex-
isting results in non-linear regression. The actual construction of
guaranteed-content prediction intervals directly follows from this
theory. Simulated and real data are used to illustrate the practi-
cal difference between classical and guaranteed-content prediction
intervals for ARCH models.

KEYWORDS Guaranteed content interval; heteroskedasticity; non-
linear autoregression; parameter uncertainty

INTRODUCTION

The purpose of this paper is to advocate an approach to prediction inference for
time series which is based on prediction intervals with guaranteed content. By
prediction inference we mean the analysis of a set of data with the aim of obtaining
the forecast of a future event. Ideally, prediction intervals are subsets of the space
of all possible events which contain the future and hence unobserved event with a
given probability, usually called content or coverage. Such a definite probabilistic
statement is unfortunately rarely available in practice unless the Bayesian approach
is embraced. However, it is sometimes possible to obtain a prediction interval
whose content is guaranteed with a given high probability. It is shown in this paper
how to construct such guaranteed-content prediction intervals for a large family
of parametric models for time series; examples include threshold autoregression
(TAR), feed-forward neural network, autoregressive conditional heteroskedasticity

(ARCH) and many others, described for instance in Granger and Terésvirta (1993).
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The guarantee of the content with a probabilistic statement is to be put in
contrast with classical (frequentist) prediction intervals whose content is guaranteed
only in average over hypothetical repetitions of the prediction process. In practice,
however, merely a single time series is usually available. The average meaning of the
classical prediction interval is moreover not always acknowledged by the non-expert
who often has a blind confidence in the content. This pitfall can be avoided with
the Bayesian approach to prediction inference, which allows for the computation
of the probabilistic distribution of the future event of interest. Bayesian prediction
inference is, however, subject to some practical difficulties. For instance, to date
no general-purpose procedure exists to compute the predictive distribution (the
distribution of the future event) because case dependent Monte Carlo techniques
are often needed. A growing literature results from this fact, see e.g. Geweke
(1989b), Geweke and Terui (1991), and Polasek and Kozumi (1996).

Guaranteed-content prediction intervals are not new and an history can be found
in Aitchison and Dunsmore (1975, p. 128). Wald and Wolfowitz (1946) were the
first to consider them for the Normal distribution and independent observations.
More recently Carroll and Ruppert (1991) gave asymptotic results in the non-linear
regression setting, and we show in this article under which conditions Carroll and
Ruppert’s results may be extended to non-linear autoregression processes.

The article is organized as follows. Section 2 introduces the models for time series
considered in the study. Sections 3 and 4 give an overview of, respectively, Bayesian
and frequentist prediction inference within the time series context of interest; the
strengths and weaknesses of both approaches are pointed out. Section 5 introduces
the guaranteed-content prediction intervals and gives asymptotic results of practical
use. ARCH simulated and real data illustrate the use of the prediction intervals. A
discussion concludes the paper in Section 5. Proofs are gathered in the Appendix.

MODELS FOR TIME SERIES

Assume a real valued time series, x1,x2,... ,Z,, has been observed. A common
(some would say the main) inferential problem is to provide a forecast of a future
unobserved value, say x,, . Thus, the probabilistic object of interest is (if it exists)
the conditional density of .1 given x1, ... ,Z,, denoted p(zpip|Tn, ... ,21). This
density is generally unknown and need to be deduced from the data. To narrow
down the problem it is customary to use a parametric specification general enough
to provide a good approximative working tool. In our case we consider a parametric
model which is widely used because of its direct interpretation in terms of first and
second order conditional moments. We thus assume that, for p > 0 fixed,

$t+h|yt,t,§ ~ ['{f(yt,p; 9)7g(yt,p;77)2}7 (1)

where the notation vy, = (2¢,... ,2—pt1) and ¢’ = (0',7') is used. We also use
L to denote any given distribution law, here with expectation f(yp;6) and stan-
dard deviation g(ysp;n); both are real valued functions depending implicitly on



h. The prediction intervals discussed in Section 4 and 5 are mainly directed at
unimodal laws. In practice, the symmetric Normal distribution is often use for
L. The above model is mainly appropriate for equally spaced observations. It is
intuitively appealing because, for a given parameter value £, the conditional expec-
tation f(yyp;0) is the optimal (in a mean squared error sense) point forecast for
Tp4n, and g(yy, p; 17) measures its variability which is allowed to vary with time. Note
that at this stage no stationary assumption is made, although classical stationary
autoregressive processes are important special cases of (1), examples of which are
given in the Introduction. Polynomial functions are an example of family of simple
non-linear functions useful to model f(y;p;60) and g(y:p;1)? without relying on a
stationary model for the generating stochastic process, see de Luna (1998).

The parameter ¢ is most of the time a modeling artifact which eases the primary
task of computing or approximating the density p(zp4n|Tn,...,21). There are
two main schools when it comes to deal with a parameter. It can be considered
as a random variable (Bayesian school) or as having a unique but unknown fixed
value (frequentist school). In the two next sections we review these two approaches
to prediction inference in time series and point out their respective strengths and
weaknesses. Note that, in this article, we try to avoid to enter into the philosophical
controversies existing between Bayesians and frequentists, concerning, for instance,
the definition of probabilities. We adopt instead a pragmatic view in the exposition
of these two different approaches to inference.

BAYESIAN PREDICTION INFERENCE

The Bayesian prediction inference is conceptually simple. Because the parameter
£ is here a random variable, we can associate to it a prior distribution, with say
density p(§). This density must summarize the beliefs on the parameter, indepen-
dently of the data collected. These beliefs are then updated with the observation
of x1,...,x,, thereby giving the so called posterior density

1972((32 (2)
Note that p(yn,,|€) is the likelihood function for the parameter £. The prediction

p(§|yn,n) X p(yn,n

density can then be obtained as follows
p(£n+h|yn,n) - /p(xn—l—h:f‘yn,n)df

- / DT 1Yy VD€l ). 3)

The prediction distribution is therefore an average of the parametric model pre-
dictive distribution (1) over the posterior distribution of the parameter. This so
far elegant approach suffers from two main drawbacks when it has to be actually
implemented: (i) A prior distribution is needed for a parameter that has often little
intuitive interpretation. If no such prior is available, then some ad hoc solutions
are often used such as taking the posterior proportional to the likelihood, i.e. using



the improper prior p(¢) = 1. The prediction density is in this case not justified as
such even if the posterior is itself a proper distribution. (ii) The integral (3) seldom
has a known closed form in which case simulation techniques need to be used. For
instance, assuming that you are able to draw ¢ values from the posterior distrib-
ution, (3) can be estimated either by averaging p(@,,+1|yn,n,§) over the simulated
values for &, or by further drawing from p(z,,44|Yn,n, &) for each £ value obtained
from the posterior distribution. In the latter, the obtained simulated values allow
for a classical empirical estimation of p(@,4n|yn,n). However, drawing from the
posterior distribution may not be straightforward, for instance, when the constant
of proportionality in (2) is unknown. Complex numerical or stochastic methods
such as Markov chain Monte Carlo need then to be used, see e.g. Geweke (1989a)
and Gelman et al. (1995).

Some will argue that problems encountered with (i) are often due to an inade-
quate model. A typical Bayesian model should be parameterized in an interpretable
manner so as to enable the scientist to form his/her prior beliefs on the parameter.
In time series the Dynamical Linear Models of West and Harrison (1989) are of
this type. These models are, however, intrinsically linear. The second point (ii)
is mainly a practical issue in which, nowadays, very much research effort is car-
ried over. However, no general methodology is available at present and different
models for stochastic processes have to be studied in a case by case basis. Recent
works on special cases of (1) include Geweke (1989b) on ARCH models and Geweke
and Terui (1991) on TAR. Note that a non-parametric approach allows for a more
general approach (see Miiller et al., 1997), but this is out of the scope of this paper.

FREQUENTIST PREDICTION INFERENCE

The frequentist approach to prediction inference, although often simple to im-
plement, is conceptually intricate. This is because the prediction density —here
P(Trtb|Ynom, &) — is generally not computable, the value of { being unknown. To
circumvent this problem the notion of prediction interval (sometimes called toler-
ance interval) must be introduced. These intervals cannot be based on the unknown
prediction density and, therefore, a frequentist argument need to be used.

Prediction intervals are constructed with the help of a pivotal quantity which in
our case may be chosen as

_ Tn+h — f(yn,pE 0)
S = 9Ynpsn)

To simplify the exposition we assume in this section that £ is the Normal distrib-
ution. Thus, S(§) has N(0,1) distribution when conditional on y,, ,, for a given &.
Hence, the interval

Po(8) = [f Wnp: 0) £ 9(Yn,pi M@, ol
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where @' /o is the (1 — a/2)-quantile of the standard Normal distribution, has
the property

Prﬁ{xn-‘rh e P, (f)wn,p} =1-oa

The probability 1 — « is called the content or coverage of the interval.
Suppose now that an estimator E = &(Yn,n) for £ is available. It is then usual

practice to use the plug-in prediction interval P, (§). Under regularity conditions

we have

Ee [Pre{@ntn € Pa(&)[ynp: E}|ynp] =1 - a+ Op(n?). (4)

The two operators E and Pr are used instead of a single one for better readability.
We use throughout the Mann and Wald (1943) notation, o, and O,, for orders of
convergence in probability. The above result, which is justified in the Appendix,
leads us to call P, (é ) a mean-content prediction interval. This type of intervals is
of common use in practice and we also refer to it as classical prediction interval.
Prediction inference based on P, (é ) neglects the variability due to the estimation
of £&. We see from (4) that this uncertainty influences the mean-content with an
order Op(n~1). The use of techniques to improve on the convergence rate of the
mean-content is called calibration. Analytical calibration can be undertaken, for
instance, by calculating higher order terms in the asymptotic approximation (4)
and modifying « in consequence (Cox, 1975, Barndorff-Nielsen and Cox, 1996).
However, this is feasible only in simple cases. Bootstrap is an usual remedy to the
analytical intractability because it allows for high order approximation of expecta-
tions by using replicates from the actual time series, see e.g. Beran (1990). Note,
however, that the expectation of interest in (4) is conditional on the last p observed
values, ¥y, p, of the times series. Stine (1987) and Kabaila (1993) have proposed a
bootstrap scheme to construct prediction intervals for linear autoregressions. Their
method is based on bootstrap copies of the original time series which are generated
backward in time and conditioned on y, ,. At this moment, we are not aware of
how this could be generalized to the non-linear processes considered in this paper.
Other simulation techniques have been proposed in the literature in order to take
into account parameter uncertainty, see Breidt et al. (1995). Finally, prediction
intervals for misspecified linear models were studied in de Luna (2000). Here again,

the analytical developments are difficult to generalize to non-linear situations.

GUARANTEED-CONTENT PREDICTION INTERVALS

In the two previous sections, we have pinpointed possible drawbacks of Bayesian
and classical frequentist prediction inference when applied to non-linear time series
models described by (1). We now propose another type of prediction inference
for time series. When no prior beliefs on the parameter is available and if the
prediction inference is carried out on a single realization of a stochastic process,

it is more appropriate to construct prediction intervals whose content, 1 — «, is
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guaranteed with high probability rather than merely in average. Formally, we want

~,

Ga,y(§) C R such that

Pl“g [Prg {$n+h S Ga,’y (2)‘27 yn,p} >1- a|yn,p] =1-—9. (5)

-~

We say in the sequel that G, ,(€) is a guaranteed-content prediction interval. Before
to explicitly construct G (E), we state some regularity conditions. In the sequel,
we denote W the standardized, i.e. with mean zero and variance one, distribution
function associated to L.

(H1) The distribution ¥ possesses a well behaved density .

(H2) f(-;0) and g(-;n) are twice continuously differentiable with respect to 6 and
1 respectively; with second derivative bounded in probability.

(H3) E(E— &) =0(n1), E{(E— fo)(/f\— &)’} = O(n™1), where ¢ is an estimator
of £, the single limit value of interest. In particular, model (1) needs to be
valid only for £ = &p.

(H4) (€ — &) "~ N(0,%) (asymptotic normality).

(H5) ﬁE and y,,, are asymptotically independent.

Assumptions (H3-4) are commonly met by maximum likelihood and alike estimation

procedures. The last assumption (H5) is not always trivial to check. However, a

sufficient condition is that the stochastic process has some vanishing dependence

structure (e.g., mixing conditions, see Doukhan, 1994). Finally, the smoothness
assumptions of (H2) can be weakened from case to case.
A guaranteed-content prediction interval G, (E) can be constructed by tuning

« in the plug-in interval, introduced in the previous section for the Normal model.

The naive choice G, (E) = P, (E) is not satisfactory as we see with the results

given below. We start by addressing the case of one-sided intervals.

PROPOSITION. Let (H1-5) hold. Then, for

Gapy(€) = (—00, F(Unpi 0) + 9(Unpi 1)W1 ],

where \Ill_jﬁ denotes the (1 — (3)-quantile of the distribution function U, (5) holds

up to an order o,(n='/?) if
B =a+n Y20 (U L) (d'Sd) 2, (6)

where d' = (9(Yn,p3M0) ™ f6: 9(Un,pi 0) U1 2590) with fo = 8f(Yn,pi60)/06 and
9o = 09(Yn,p;M0)/ N
See the Appendix for a proof. Equation (6) shows that the parameter uncertainty
influences the guaranteed content with an order O, (n~1/2). For the mean coverage
(4) this uncertainty was only present with order O,(n~1). Two-sided intervals can
be straightforwardly obtained from the Proposition. An interesting simplification
arises when the distribution £ is symmetric as it is the case with the Normal law.
COROLLARY. Let (H2-5) hold and L be the Normal distribution law. Then, for

Gan () = [F(Unpi 0) £ 9Unp; WP 50, (7)



(5) holds up to an order o,(n='/2) if
B=a+n 2207 p( 1, ) (dhTads) (8)

n—oo

where ¢ is the Normal density function, dy = g(yn,p;no)_léf_lﬁmgo and ¥y =
nVar(7).
See the Appendix for a proof. Thus, in the Normal case, the parameter uncertainty
due to the estimation of 6 is less relevant than the one due to the scale parameter
7. In this particular case, taking into account the location uncertainty would need
higher order approximations. On the other hand, the ambition here is not primarily
to take into account parameter uncertainty, but to obtain a prediction inference
more relevant for the observed realisation of the stochastic process by ensuring a
high guarantee 1 — . The results above show, however, that these two issues are
intrinsically related and that increasing the sample size may not help to get ride of
parameter uncertainty if 1—- is increased at the same time (<I>; ! may be arbitrarily
large). Finally, note that choosing G, 4 (E) =P, (E), i.e. f=ain (7), corresponds
to v = 0.5 if ignoring terms of order o(n~1/?) and higher, that is only 50% of the
times is the content 1 — « reached.

We now give some examples to illustrate the Normal case, where the scale para-
metrization is the most sensitive one. The modelling of the scale variation has for
instance been emphasised in financial applications.

Ezample (homoskedasticity) Setting g(yn ;1) = 1, a strictly positive real value,
(8) becomes

B=a+207 (@ )0y T/ Var(®).

Ezample (ARCH conditional variance) This second example considers Engle’s
(1982) ARCH modeling of the conditional variance, which corresponds to setting

p
9Wepsn) = (o + > _ miai_iy1)'?,

=1
where 1 = (o, ... ,74)- Denoting v, = (1,22,... ,22 ), (8) becomes
f=a+ <I);1¢(<D;EB/2)<I>;EB/2(n'vn)*l(v;Var(ﬁ)vn)l/Q. 9)

In the two above examples, results are not dependent on the conditional expec-
tation f(yn,p;0).

Ezample (simulated data) In order to illustrate the possible impact of the above
results on finite sample situations we use simulated data. We consider the stationary
ARCH(6) model, i.e. (1) with f(ys,,60) = 0, and g(ys p—6,7) = 0.1+, 0.1a2_,+
0.3x7 5)/2. The Normal distribution is used for £. Three independent time series
of length n = 60, 200, 300 were simulated (using the random generator of the Splus

package). Prediction intervals Ga () from the Corollary with (9) were constructed
for h =1, with v = 50% (corresponds to classical mean-content interval) and v =



TABLE 1. Upper Bounds of Mean-Content (y = 50%) and
Guaranteed-Content (v = 10%) prediction Intervals

n=60 n=100 n=200 n=300
0 05 0.1 0.5 0.1 0.5 0.1 0.5 0.1
a=0.05 1.06 1.27 0.83 0.91 215 243 1.24 1.35
a=05>5 036 0.48 0.28 0.32 0.74 0.86 0.43 0.47

Notes: Results are for h = 1 and are based on simulated ARCH time series of length n =

60, 100, 200 and 300. The intervals whose upper bound is reported are symmetric and centered in

zero. The values a = 5% and 50% correspond to contents of 95% and 50% respectively.

10%. Parameters were estimated by conditional maximum likelihood. Two values
of a were considered, namely 5% and 50%. Note that 95% content intervals are
usually so wide that alone they are not always interesting for the practitioner (see
Granger, 1996). The prediction intervals constructed are symmetric and centered in
zero and, therefore, only the computed upper bound of the intervals are displayed in
Table 1. The figures in the table show that the relative difference in length between
prediction intervals with v = 50% (mean-content) and v = 10% may attain 20%
for time series of short length n = 60. This difference remains important (almost
10%) when n = 300, which is a fairly large sample size.
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FIGURE 1. Logarithm of relative change in the SFr/US$ exchange
rate. Daily data from May 21, 1986 until May 21, 1987.

Ezxample (SFr/US$ exchange rate) We consider here daily data from the exchange
rate of the Swiss Franc against the US Dollar. The time series ranges from May
21, 1986 to May 21, 1987. By taking the first differences of the natural logarithm



we obtain a time series of 252 observations. Figure 1 displays a time plot of the
transformed data. After exploring the sample (partial) autocorrelation structure
of the raw and squared time series, we decided to model the time series as an
ARCH(6) process. Parameters were fitted by maximizing the conditional Gaussian
maximum likelihood as for the above simulated data. An analysis of the residuals
did not contradict the model assumptions in (1), i.e. normality and independence.
The constructed prediction intervals for May 22, 1987, are for v = 50% : [0 £ 0.014]
for o = 5% and [0 £ 0.0048] for o = 50%; for v = 10% we found: [0 £ 0.015] for
a = 5% and [0 £ 0.0052] for « = 50%. The relative differences between the two
types of prediction intervals are about 7 to 8 percent which obviously matters when
the decision-maker has to take a position on the basis of the forecasted volatility;
here the range of the interval.

CONCLUSION

Mean-content prediction intervals have often been criticized for being too narrow
because they neglect the sources of uncertainty created by the model selection and
the parameters estimation stages, see Chatfield (1993). We argue here that it is
more judicious to start by acknowledging the inadequacy of their average meaning,
and use instead guaranteed-content intervals, for which the parameter uncertainty
happen to be more important a factor.

Guaranteed-content intervals were, for example, recently advocated in a non-
linear regression setting by Carroll and Ruppert (1991). The use of guaranteed-
content prediction interval (or tolerance interval) in place of the classical mean-
content version constitutes a real improvement to prediction inference. This is
hoped to become more widely acknowledged in time series and more generally in
econometrics practice. With this paper, a gap existing in the theory of prediction
inference for time series has thus been filled, and, for a general family of parametric
models for stochastic processes, guaranteed-content prediction intervals have been
constructed. These are wider than classic mean-content prediction intervals because
they are more relevant to the time series at hand. We have illustrated this issue
with simulated and real data.

Bayesian prediction inference also has the advantage of addressing the actually
observed time series by fully taking into account the parameter uncertainty through
the posterior density. However, when there is no prior beliefs on the parameteriza-
tion, we believe guaranteed-content prediction intervals to be more appropriate.

For the Normal model, the results presented become particularly relevant for
the scale parameterization. In these cases, conditional heteroskedastic models play
more important a role in the distinction between mean- and guaranteed-content
prediction intervals. Finally, in practice, when the Normal assumption is not valid,
it is common to use a semi-parametric approach (where the distribution £ in (1) is
replaced by an empirical distribution). The result of the Proposition is then still
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of practical use by replacing the quantile and the density values by their sample
counterparts.
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APPENDIX

Proof of the Proposition In the sequel we use Pr instead of Pr¢,. With two Taylor
expansions, using (H2),

Priznin < (Wi 0) + 90 D1 lynp, 0,71}
= Pr[S(&) < 9(ynpim0) " fo(0 — bo)
{14 9 pi10) 96(T=0) T L+ Op(n ) i, 0,71
= Wg(unpi o) 15( 0~ 00)
{1+ gWnpi0) " 90(T-10) T 5 + Op(n )],
Again, with an order one expansion, using (H1),
Pr{znh < f(Unpi0) + 9o D, Lol 6,7}
= 1 B+ ) {9 Wi m0) 58— o)
AU 5903 10) ™ 90 (T—10)} + Op(n™). (A1)
Finally, replacing 8 by a + n_1/2<1>;11/)(\llfjﬁ)(d’§]d)1/2 one obtains the result

Pr [Pr{$7z+h € Ga,’)’(f)‘gayn,p} >1- a|yn,p] =1-—~v+ Op(n_l/Q)

for the interval G, (&) of the Proposition, because of the asymptotic normality of
the estimates, (H4), and by assumption (HS5).

Proof of Equation (4): This result is a consequence of (A.1) for § = «, conjugated
with (H2), (H3) and (H5).

Proof of the Corollary Consider (A.1), replacing § with 5/2 and ¥ with the
standard Normal distribution function ®. Moreover, the similar result
Pr{anin 2 f(Unpi0) + 903 D55l Ynp 0,71}
= B/2+&(@5},){9(Un,pim0) " f5(6 — bo0)
0559 (Unp3 o)~ 90 (T—10)} + Op(n™ 1)

applies. Noting that ¢(¢g}2) = d)((blilﬁ/Q

Pr{InJrh S Ga,'y (E)|yn,p:/§\}
= 1B+ 20(255) 27 509(Ynpi 0) " 907 —1p) + Op(n™").

) we have
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As in the Proposition proof, the assumption /n(5j—79) "~ N(0,%s), (H4), and
hypothesis (H5) complete the proof.
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