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Abstract

Generalized method of moments estimation and forecasting is introduced for very
small samples when additional non-sample information is available. Small simulation
experiments are conducted for the linear model with errors-in-variables and for a
Poisson regression model. Two empirical illustrations are included. One is based on
Ukrainian imports and the other on private schools in a Swedish county.
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1. Introduction

This paper deals with forecasting in situations when there are only few available obser-
vations for the estimation of an underlying econometric model. Such situations are, for
instance, encountered when forecasting aspects of developing or transition economies or
when forecasting at regional levels for more developed economies. Rather than avoid-
ing the use of econometric models for forecasting we wish to improve on the forecasting
performance of such models by capitalizing on additional information in the estimation
phase.

The paper introduces generalized method of moments (GMM, Hansen, 1982) esti-
mation for linear and nonlinear models when the sample size is small and additional
non-sample information about the model parameters is likely to be most bene¯cial. The
additional or non-sample information about the parameters is taken to be random and is
introduced as random linear constraints in the spirit of mixed estimation (ME, Durbin,
1953; Theil and Goldberger, 1961; and others). The additional information can, e.g.,

¤The authors gratefully acknowledge constructive comments from seminar participants at Umeºa Uni-
versity, University of Lisbon, International Symposium on Forecasting 1998 and The Swedish Econometrics
Conference 1998 on an earlier version of the paper.
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be purely judgemental or obtained by estimating analogous models for other countries,
regions or whatever is regarded appropriate. There are other ways of introducing extra
information about parameters, e.g., by inequality restrictions or by adopting a Bayesian
approach. Such alternative speci¯cations are not considered, but could be developed along
the lines of, e.g., Gourieroux and Monfort (1995, ch. 21). The structural model relating
the endogenous variable to exogenous ones can in addition to being possibly nonlinear be
either static or dynamic.

The general model framework is set in Section 2, while the GMM estimator and the
GMM based forecast are introduced in Section 3. Since the linear static model enables a
more detailed analytical study, the research on this particular model is brie°y reviewed
in Section 4. The Poisson regression model provides a slightly more complex illustration.
While analytical studies are feasible for some restricted models, such as the linear, they
are not feasible for nonlinear models and for models containing, say, errors-in-variables.
Section 4 provides Monte Carlo studies of the estimator and forecasting performance for
the linear regression model subject to errors-in-variables and for the nonlinear Poisson
regression model. Section 5 contributes by two illustrations based on imports to the
Ukraine and on private schools in a Swedish county. A few concluding remarks are saved
for the ¯nal section.

2. Model

Consider the model
yt = g(zt;¯) + ²t; (1)

where zt = (yt¡1; : : : ; yt¡p;xt; : : : ;xt¡q), ¯ 2 B ½ Rk, and t = 1; : : : ; T . The mean
function g(:; :) may be linear or nonlinear. The random error term, ²t, is assumed to
have zero mean and the covariance matrix of ² = (²1; : : : ; ²T )

0 is §. Note that a full
distributional assumption is not made. This model could without substantial di±culty be
generalized to a multivariate one.

In a linear and static model to be estimated by ordinary least squares (OLS), we say
that the sample is undersized when T < k. When this holds true, the Hessian matrix
is not invertible. For nonlinear models noninvertibility of the Hessian matrix suggests
that the sample is undersized and/or that lack of identi¯cation due to an unfortunate
parametrization are indicated.

The additional information is provided in the form1

q =R¯ + ³; (2)

where q is an observed (m £ 1) vector, the (m £ k) matrix R is given, and ³ is an
unobserved random error with zero mean vector and a given covariance matrix . The
m is the number of additional information sources. In addition, we make the assumption
that E(²t³) = 0.

1See, e.g., Kennedy (1991) for a recent and interesting example.
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3. Estimation and Forecasting

The estimation approach is GMM. The feature that makes the present setup di®erent from
the conventional one based on (1), is that there are two sets of moment conditions; those
based on (1) and those based on (2).

For the model we consider moment conditions of the form

m1 = T¡1U0(y ¡ g(Z;¯)): (3)

Here, g(Z;¯) has row elements g(zt;¯) andU is a (T£n) matrix of instrumental variables,
with n ¸ k. The content of U should depend on the speci¯cation of g(:; :). For instance,
in a static model (with zt = xt) the xt may serve as its own instrument, while if xt is
endogenous or measured with error some other instrumental variable is required (see also
Lewbel, 1997). In the classical setup, plim m1 = E(m1) = 0 is used to justify the GMM
estimator.

For the additional information about the parameter vector, the moment condition is
written

m2 =m¡1V0(q¡R¯); (4)

where V is an (m£ p) matrix of instrumental variables. In this instance, we norm by the
number, m, of replicates of additional information sources.

Since m1 and m2 are independent by the assumption E(²t³) = 0, we may write the
GMM criterion on an additive form, yielding

^̄ = argmin
¯2B

fm0
1W

¡1
1
m1 +m0

2W
¡1
2
m2g

= argmin
¯2B

f²0U(U0§U)¡1U0²+ ³ 0V(V0V)¡1V0³g:

The asymptotic covariance matrix of the estimator is then of the form

Cov(^̄) = (D
0
U(U0§U)¡1U0D)¡1 + (R0V(V0V)¡1V0R)¡1;

where D = ¡@g(Z;¯)=@¯0 is evaluated at estimates.
Since the case of interest is when the sample size is very small, large sample properties

of the estimator, such as consistency, can only be taken as rough approximations. On the
other hand, small sample properties are di±cult to study except for in some special cases.
Small-¾ (e.g., Kadane, 1971) and related approaches to ¯nd approximate properties has
not been found useful at this stage. For practical implementation a ¯rst stage based on,
e.g., the arti¯cial settings § = I and  = I can be used, or § can be estimated directly
by excluding the additional information part. With ¯ estimated an estimate of § can be
obtained from the model part and then used together with the given  in a second step.
Below additional light is cast on estimator performance for specialized models.

The h-steps-ahead forecast

ŷT+hjT = E[g(z0T+h;¯)jYT ]
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is evaluated at estimates ^̄, YT = (y1, : : : ; yT ) is the information set, and z0T+h =
(yT+h¡1; : : : ; yT+h¡p; x

0
T+h; : : : ;x

0
T+h¡q) with x

0
T+j ; j = 1; : : : ; h; is assumed known. For

nonlinear dynamic models the evaluation of the conditional expectation may be a very
di±cult problem (e.g., Granger and TerÄasvirta, 1993, ch. 8).

Using a ¯rst order Taylor expansion about the true parameter vector ¯0, the forecast
error is

êT+h = yT+h ¡ ŷT+hjT

¼ g(z0T+h;¯0)¡E[g(z0T+h;¯0)jYT ]¡
@E[g(z0T+h;¯0)jYT ]

@¯0 (^̄ ¡¯0) + ²T+h:

From the approximate forecast error we have the general properties:

E(êT+h) = EYT [E(êT+hjYT )] = ¡EYT

"
@E[g(z0T+h;¯0)jYT ]

@¯0 (E(^̄jYT )¡¯0)

#

V (êT+h) = VYT [E(êT+hjYT )] +EYT [V (êT+hjYT )]

= VYT

"
@E[g(z0T+h;¯0)jYT ]

@¯0 E(^̄jYT )

#
+ ¾2 +EYT [V (g(z

0
T+h;¯0)jYT )]

+EYT

"
@E[g(z0T+h;¯0)jYT ]

@¯0 Cov(^̄jYT )
@E[g(z0T+h;¯0)jYT ]

@¯

#
;

where ¾2 = V (²T+h).
For particular models these expressions may be simpli¯ed and then easier to inter-

pret. For instance, when there are no lagged endogeneous variables and the exogenous
variables are ¯xed, i.e. when z0T+h = (x0T+h; : : : ; x

0
T+h¡q), we obtain the predictor

ŷT+hjT = g(z0T+h;¯) and

E(êT+h) = ¡
@g(z0T+h;¯0)

@¯0 (E(^̄)¡¯0)

V (êT+h) = ¾2 +
@g(z0T+h;¯0)

@¯0 Cov(^̄)
@g(z0T+h;¯0)

@¯
:

If in addition the model is linear in parameters, @g(z0T+h;¯0)=@¯
0 = z0T+h.

4. Two Special Models

4.1 The Linear Regression Model

Durbin (1953), Theil (1963) and others consider the linear model by augmenting the data
set by arti¯cial observations corresponding to the random additional information about
parameters.

Suppose we wish to estimate the parameters of the linear model y = X¯ + ², where
y is the T vector of observations on the endogeneous variable, X is the matrix of ¯xed
exogenous variables, ¯ is the parameter vector, and ² is the vector of disturbances with
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mean zero and known covariance matrix §. The additional information on ¯ is available
in the form of random linear constraints: q =R¯ + ³.

Combining the two independent sources of sample and extraneous information we haveÃ
y

q

!
=

Ã
X

R

!
¯ +

Ã
²

³

!
:

The covariance matrix of the disturbance term is block diagonal with blocks § and ,
respectively. The generalized least squares (GLS), the mixed and the GMM (with U =X

and V = I) estimators are all equal, such that

^̄
ME = (X0§¡1X+R0¡1R)¡1(X0§¡1y+R0¡1q):

This estimator is best linear and unbiased with covariance matrix

V (^̄ME) = (X0§¡1X+R0¡1R)¡1:

Note that in the absence of data on y and X these expressions reduce to those of a GLS
estimator based on only the additional information, while without additional information
the conventional GLS estimator emerges. As the variance of the random additional in-
formation goes to zero, the mixed estimator approaches the restricted LS estimator (e.g.,
Fomby et al., 1984, ch. 6) implied by the exact restriction R¯ = q. On the other hand, as
the random restrictions become less certain and assuming that E(²²0) = ¾2I, the mixed
estimator approaches the ordinary least squares (OLS) estimator. With  known through
the external source, restricted versions of § can be estimated by some two stage proce-
dure. Theil (1963) o®ers a large sample justi¯cation, and Swamy and Mehta (1969) study
the ¯nite sample properties.

The predictor of yT+h using mixed estimation and based on known x0T+h is ŷ0ME =

x0T+h
^̄
ME . The forecast error is e

0
ME = x0T+h(¯¡

^̄
ME)+ ²T+h so that E(e

0
ME) = 0, and

the forecast error variance is

V (e0ME) = ¾2 + x0T+h(X
0§¡1X+R0¡1R)¡1x0

0

T+h:

When the basic assumptions are satis¯ed and the additional information is unbiased then
forecasting based on ME o®ers a gain.

If X or some part of X is measured with error the mixed estimator will be biased.
Measurement errors appears a real problem for transition and developing economies, with
new de¯nitions and measurement practices being put into place. An instrumental variable
(IV) or GMM estimator for the linear model is easily obtained but its properties in small
samples are largely unknown. The IV estimator and its covariance matrix are of the form

^̄
IV = (X0AX+R0¡1R)¡1(X0Ay+R0¡1q)

Cov(^̄IV ) = (X0
AX+R0¡1R)¡1

with A =U(U0§U)¡1U0 and where U is the instrumental variable. For the IV estimator
there are equal numbers of variables in U and X, i.e. n = k. The GMM estimator
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is more general in the sense that it can encompass more variables in U than in X, i.e.
n ¸ k. Lewbel (1997) shows how to construct instrumental variables from only the
variables contained in the model to attain consistency of the estimator. Obviously, this is
a potentially very useful approach to estimation, whenever it is di±cult to ¯nd external
instrumental variables. There is some doubt, however, that the estimator performs well
in small samples.

4.1.1 Simulation Experiment

To cast some light on the small sample properties of the GMM estimator for a case of
measurement errors in X, and to study coverage probabilities of forecast con¯dence inter-
vals we perform a small simulation experiment. The assumed models for the generation
of data are of the form

yt = ¯0 + ¯1x
¤
t + ²t and q = ¯ + ³:

The parameters are set at ¯0 = 1 and ¯1 = 0:2. The unknown x¤t is generated from an
AR(1) model (x¤t = 0:7x¤t¡1 + Àt) and level shifted by adding 5 to x¤t . The measurement
error is introduced as xt = x¤t + ´t and the instrumental variable is generated as ut =
0:7x¤t + »t. Additional information about ¯ is available with m = 2; 4; 6; 8; 10 and 12.
The random errors Àt; ´t and »t are generated independently from N(0; 1) distributions.
The ³i; i = 1; 2; are generated as N(0; ¾2³ ) with ¾2³ = 0:05 and 0:1, and ²t as N(0; 2),
and mutually independent as well as independent of other error terms. Sample size is
varied; T = 3; 6; 9; 12; 15 and 18, and 1000 replications are run in each cell. Note that the
explanatory power in both models is low. For ¾2³ = 0:1 the range of the ¯i; i = 0; 1; is

approximately 1.26 (using ¾³ ¼ Range/4), while for ¾2³ = 0:05 the range is approximately

0.89. For the yt model a low theoretical R2 may give a higher estimated R2 for few rather
than for many observations.

Besides estimation by GMM (or equivalently by IV) using the ut as an instrument,
the OLS estimator based on yt = ¯0+ ¯1xt+(²t ¡¯1´t) is applied. The OLS estimator is
also used to obtain estimates of ¾2 for GMM estimation.

Some indicative bias and MSE results for ¯1 are given in Figure 1. As expected the
MSEs of both estimators get smaller as T increases. For the GMM estimator the bias is
larger for the larger sample size and small m. An explanation to this lies in the rather low
explanatory power of the model. As T increases the less precise model observations become
relatively more important. Both measures are decreasing in the number of additional
information 'observations', m. In terms of bias, OLS is doing better than GMM when
this utilizes additional information that is not precise, i.e. when ¾2³ is large. For MSE,
the particular extra information used here brings about improvements for all T . The
improvement is largest for small T and m. This is the region where improvements are of
most value. These conclusions hold for other parameter combinations as well.

Figure 2 reports coverage probabilities for forecast con¯dence intervals. In calculating
the intervals quantiles are obtained from the t(T + m ¡ 2)¡distribution for the GMM
estimator and from the t(T ¡2)¡distribution for the OLS estimator. The coverage proba-
bilities for OLS based forecasts are not signi¯cantly di®erent from the nominal 0.95 level.
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Figure 1: Bias and MSE for ¯1 using GMM and OLS estimation at T ;¾2³ .
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For forecasts based on the GMM estimator the discrepancy from the nominal level is
signi¯cant. Less precise additional information yields coverage probabilities closer to the
nominal level and so does a larger T .

4.2 The Poisson Regression Model

The Poisson regression model has both the mean and the variance of independent yt equal
to ¸t = exp(xt¯), where xt is a vector of exogenous variables. Hence, in this case the ²t
of eq. (1) has variance ¸t, so that heteroskedasticity is an essential feature of the model.
A number of di®erent moment restrictions, e.g., those that correspond to the estimators
considered by Gourieroux et al. (1984), can be utilized for estimation. We consider
restrictions based on the likelihood equation, i.e. X0(y ¡ ¸) = 0 with ¸ = (¸1; : : : ; ¸T )

0,
to obtain the criterion function

(y ¡¸)0X(X0¤X)¡1X0(y ¡¸) + (q¡R¯)0V(V0V)¡1V0(q¡R¯);

where ¤ = diag(¸). Since the ¯rst order condition is nonlinear in ¯ no explicit solution
exists. The best forecast can be obtained by specializing a result for serially correlated
and overdispersed y1; : : : ; yT (BrÄannÄas, 1995a) and is here of the simple form ¸T+h.

Consider as an example the regressor free case so that ¸ is constant and  = !Im.
Then the natural (in the sense that it still yields a simple linear estimator) criterion to
minimize is of the form

TX
t=1

(yt ¡ ¸)2=¸0 +
mX
j=1

(qj ¡ ¸)2=!;

where ¸0 is ¯xed at some initial value. Minimization yields the estimator

^̧ =

2
4¸¡1

0

TX
t=1

yt + !¡1
mX
j=1

qj

3
5 =u;

where u = T=¸0+m=!. The estimator has the properties E(^̧) = ¸ and V (^̧) = ¸(T=¸20+
m=!2)=u2.

Hence, the estimator is unbiased and as !!1, the estimator has a variance approach-
ing that of the maximum likelihood (ML) estimator. For smaller !, Figure 3 presents
illustrations showing that the MSE of this mixed estimator may be much smaller than
that of the ML estimator. For ! ! 0, the MSEs approach ¸=m.

The best forecast is ^̧ and the forecast variance is equal to ¸[1 + (T=¸20 +m=!2)=u2].
Hence, forecast properties depend on the quality of the additional information in much
the same way as the estimator.

4.2.1 Simulation Experiment

To illustrate the properties of the estimator and the forecast for a more general Poisson
model we conduct a Monte Carlo experiment. The assumed model is Poisson with

¸t = exp(¯0 + ¯1xt):
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Figure 3: MSEs for Poisson model with ¸ = ¸0 = 1; 2; 3; T = 2;m = 3 and ! varied.

The parameters are set at ¯0 = 1 and ¯1 = 0:2. The xt is generated as N(5; 4) but
kept ¯xed over the 1000 replications run in each cell, and the sample size is varied; T =
3; 6; 9; 12; 15 and 18. The additional information about ¯ is available in the form of
q = ¯ + ³, with m = 2; 4; 6; 8; 10 and 12. Here, ³i; i = 1; 2; is generated as N(0; ¾2³ ), with

¾2³ = 0:5 and 1. Note that q generated this way carries very little information.
Some indicative bias and MSE results for ¯1 are given in Figure 4. As expected both

the bias and the MSE get smaller as T increases. Both measures are constant or increasing
in the number of extra information 'observations', m, for larger sample sizes. In terms of
bias, ML is best already at T = 3 observations. For MSE the particular extra information
used here appears to bring about improvements for all T .

Figure 5 reports empirical coverage probabilities for forecast con¯dence intervals based
on the normal distribution. Coverage probabilities get closer to the nominal 0.95 level as
T increases, while a larger m appears to have a very small e®ect. On comparison with
the ML based forecasts, coverage probabilities based on GMM estimation are higher for
T · 9, while for larger values there are no substantial di®erences. Coverage probabilities
are signi¯cantly too small, with the exception of the ML based interval for T = 18.
The forecasts appear to be (not signi¯cantly so) downward biased and to have skewed
distributions for small T . Using intervals based on the t¡distribution would increase the
empirical coverage probabilities.
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5. Empirical Illustrations

5.1 Import Demand

As an illustration we present a model based forecast for imports to the Ukraine. A feature
of this problem is a small sample and a potentially low data quality. The small sample
size is typical of economic activity in many transitional countries.

The econometric model is based on the economic theory of import demand (e.g., Gold-
stein and Kahn, 1985). The simplest form of import demand models consistent with theory
is

Mt = f(Pt; Yt);

whereMt is the quantity of import demanded in period t, Pt is the ratio of price of imports
relative to the domestic price level, and Yt is the real gross domestic product (GDP). For
developed countries a negative sign is expected for @M=@P , while @M=@Y is expected to
be positive. For a transition economy as the Ukrainian one we may expect @M=@Y to be
negative. An explanation to this is the growing demand for imported goods in the ¯rst
transitional stages when the economy is in recession.

A dynamic behaviour could be introduced by including lagged dependent and/or inde-
pendent variables linearly or log-linearly. Thursby and Thursby (1984) conclude that the
model should include some dynamic behaviour, preferably a lagged dependent variable.
Boylan et al. (1979) conclude that the log-linear form is to be preferred. Due to the small
sample size, we specify a static model in logarithmic variables.

With respect to the choice between nominal or real variables we choose the former
(cf. Branson, 1968). By this we avoid having to explain two series, one for the quantity
of imports and one for the import prices in order to get the current value. The chosen
approach has some drawbacks. The determinants of prices and volume are di®erent and
a single equation carries the danger that the estimated coe±cients will contain some
interaction of supply and demand in°uences.

The model, in a logarithmic functional form, is speci¯ed as

logMt = ¯0 + ¯1 logYt + ¯2 logPt + ²t;

where Mt and Yt are aggregated nominal values of imports and GDP, respectively. The
data is mainly collected from International Financial Statistics (IMF, 1997) and covers
the years 1992{1995. Since an import price index did not exist for the Ukraine, one
was constructed from foreign export prices and the share of export to the Ukraine. All
data are transformed into USD. The activity variable is probably underestimated, since
transitional countries often experience rapid growth of the informal sector during the ¯rst
stage of transition.

The model is ¯rst estimated by OLS on the four annual observations for the Ukraine.
These estimates and others are given in Table 1. The estimated e®ect of GDP is negative
and signi¯cant, while the price variable has an expected and signi¯cant e®ect. The prior
information about the parameters of the model are obtained by estimating corresponding
models for Poland and Hungary on the years 1990{1994. Combinations of the prior infor-
mation are also reported in Table 1. Using both countries the mixed estimator e®ects of
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Figure 6: Observed Ukrainian imports and forecasts with 95 percent forecast intervals.

Y and P are ¡0:27 and ¡0:23, respectively. The standard errors of the mixed estimators
are smaller. An attempt to estimate the parameters by a ¯xed e®ect panel data approach
gives quite unreasonable estimates.

To produce ex ante forecasts independent variables are ¯rst forecasted two years ahead
using an AR(1) model. The resulting forecasts and 95 percent con¯dence intervals (based
on the t{distribution) are presented in Figure 6. Note that the con¯dence interval for the
pure OLS estimator is based on the t(1){distribution. This implies a length of the OLS
intervals that stretches beyond the ¯gure.

Table 1: Estimation results for import models (standard errors in parentheses).

Ukraine Poland Hungary
Variable OLS MEPo MEH MEPo+H OLSPo OLSH
logY -0.45 -0.35 0.11 -0.27 -0.27 0.34

(0.17) (0.05) (0.12) (0.05) (0.05) (1.22)
logP -0.43 -0.30 -0.11 -0.23 0.06 0.38

(0.09) (0.04) (0.07) (0.04) (0.07) (0.31)
Constant 14.96 13.51 8.50 12.56 12.17 3.84

(1.88) (0.19) (1.40) (0.18) (0.88) (11.49)
s2 0.0022 0.0116 0.0147 0.0130 0.0829 0.0117
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5.2 Private Schools

Estimates and forecasts for the entry and exit of elementary private schools are given for
the county of VÄasterbotten, Sweden. The sample consists of only 45 observations on 15
municipalities with three annual observations on the number of public schools. Overall
there are only a few non-zero observations on the dependent variable. A school ¯nance
reform (1991-1992) has stimulated the entry of private schools in Sweden. From 1991/1992
up till now the total number for the country has increased from 90 till 350. While the
debate on the role of private schools as providers of education is not new, relatively little
is known about the economic incentives or disincentives for private schools. Hoxby (1993)
found evidence that public schools improve their quality in communities where competition
from private schools is strenuous. Downes and Greenstein (1996) shed some light on the
determinants of localization choice of private schools in California during 1978-1979.

We model the number of private schools by an integer-valued autoregressive model of
order one (e.g., BrÄannÄas, 1995b). This model may, e.g., be written on the form

yit = ¼iyit¡1 + Ái + ²it;

where yit denotes the number of private schools in the ith municipality at time t, ¼ = 1=(1+
exp(µ)) denotes the survival probability of the existing private schools,2 Ái is the mean
entry and the error term ²it has zero mean. The mean entry Ái could be modelled, e.g., as
the mean function of a Poisson variable (»it = Ái+²it). In this particular case there appears
to be little room for elaborate behavioural models, and we let Ái = Á + ® for the largest
municipality (Umeºa) of the county and let Ái = Á for all other municipalities. In general, Ái
could be a function of public school characteristics and the regional demographic structure
(Downes and Greenstein, 1996, and references therein).

The sample is obtained from the National Board of Education (Skolverket) and covers
the calendar years 1992-1994 for 286 Swedish municipalities. Since the model is dynamic
there will be only two observations for the two parameters for each municipality. Moreover
there is no variation within most of the municipalities while there is more variation across
municipalities. The model for VÄasterbotten was ¯rst estimated by nonlinear least squares
(NLSQ). Second, extra information was obtained for the µ and Á parameters by estimating
the model without a dummy variable (cf. ®) on other Swedish municipalities and used
in a ¯nal step for GMM estimation. The estimation results are presented in Table 2 and
indicate substantial improvement in estimation e±ciency and that the survival probability
is very close to one. The mean entry Á̂ is slightly higher when the extra information is
used, while ®̂ is slightly smaller.

Since ¼̂ ¼ 1:0 it follows (BrÄannÄas, 1995b) that the best forecast for the number of
public schools is the ¯nal observation, i.e. yi;1995. As Á̂ = 0:08 we forecast an entry about

every 12 years for the other municipalities. Using Á̂ and Á̂+ ®̂ as well as their con¯dence
intervals we may obtain the corresponding density function evaluated at Á̂ and Á̂ + ®̂ as
well as at the lower and upper limits of their con¯dence intervals. We ¯nd that for no
entries in the next year the probability is between 0.20 and 0.24 for Umeºa while between

21¡ ¼ is the exit probability. Note that ¼ is kept constant across municipalities.
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Table 2: Estimation results for private school models (standard errors in parentheses).

Para- VÄasterbotten Sweden
meter NLSQ GMM NLSQ
Á 0.07 0.08 0.20

(0.13) (0.01) (0.10)
® 1.43 1.42 {

(0.52) (0.05)
µ -10.86 -20.30 -14.63

(301.84) (461.2) (58.74)

0.91 and 0.94 for the other municipalities. From these values we easily ¯nd probabilities
for one or more new private schools. Once a new private school is founded it will according
to the model survive.

6. Conclusions

The paper has demonstrated that additional information may be incorporated for the
estimation of more general models than the previous limitation to linear models have
indicated. The additional information may come from di®erent sources. When data is
available for corresponding phenomena for other countries, regions, etc. estimation results
for these may be utilized using the present framework. An alternative is then obviously
to employ a panel data approach instead. The additional information may also take the
form of subjective judgemental assessments, which then breaks the ties to panel data
estimation.

The Monte Carlo simulations indicate that the use of additional information is most
bene¯cial when the sample size is at its smallest. A realistic goal for forecasting perfor-
mance in circumstances that we have tried to face in this paper should obviously be placed
lower than for cases with long and stable time series data. Using models and clear-cut
estimation procedures, we believe, makes it easier to communicate, evaluate and improve
on forecasting practise.
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